Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs

卷积神经网络 学习迁移 深度学习 人工智能 医学 射线照相术 特征(语言学) 模式识别(心理学) 骨质疏松症 接收机工作特性 计算机科学 放射科 病理 语言学 内科学 哲学
作者
Ki Sun Lee,Seok-Ki Jung,Jae Jun Ryu,Sang Wan Shin,Jinwook Choi
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:9 (2): 392-392 被引量:92
标识
DOI:10.3390/jcm9020392
摘要

Dental panoramic radiographs (DPRs) provide information required to potentially evaluate bone density changes through a textural and morphological feature analysis on a mandible. This study aims to evaluate the discriminating performance of deep convolutional neural networks (CNNs), employed with various transfer learning strategies, on the classification of specific features of osteoporosis in DPRs. For objective labeling, we collected a dataset containing 680 images from different patients who underwent both skeletal bone mineral density and digital panoramic radiographic examinations at the Korea University Ansan Hospital between 2009 and 2018. Four study groups were used to evaluate the impact of various transfer learning strategies on deep CNN models as follows: a basic CNN model with three convolutional layers (CNN3), visual geometry group deep CNN model (VGG-16), transfer learning model from VGG-16 (VGG-16_TF), and fine-tuning with the transfer learning model (VGG-16_TF_FT). The best performing model achieved an overall area under the receiver operating characteristic of 0.858. In this study, transfer learning and fine-tuning improved the performance of a deep CNN for screening osteoporosis in DPR images. In addition, using the gradient-weighted class activation mapping technique, a visual interpretation of the best performing deep CNN model indicated that the model relied on image features in the lower left and right border of the mandibular. This result suggests that deep learning-based assessment of DPR images could be useful and reliable in the automated screening of osteoporosis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yibose发布了新的文献求助10
刚刚
秋2完成签到 ,获得积分10
刚刚
Hqing完成签到 ,获得积分10
1秒前
1秒前
ONE发布了新的文献求助10
1秒前
MORNING发布了新的文献求助10
1秒前
科研通AI2S应助Bin_Liu采纳,获得10
1秒前
琅琊为刃发布了新的文献求助200
1秒前
小慧完成签到 ,获得积分10
2秒前
迅速的破茧完成签到,获得积分20
2秒前
JinyuGuo发布了新的文献求助10
2秒前
李曌发布了新的文献求助10
2秒前
蜜雪冰城完成签到,获得积分10
4秒前
Sunshine发布了新的文献求助10
4秒前
董日甫完成签到 ,获得积分10
4秒前
lg应助超爱你采纳,获得10
4秒前
上官若男应助GCD采纳,获得10
5秒前
5秒前
6秒前
6秒前
SYLH应助Jeff采纳,获得10
6秒前
不变皆旗完成签到,获得积分10
7秒前
艾v完成签到,获得积分10
7秒前
7秒前
思源应助张艾宇采纳,获得10
8秒前
Neuro_dan完成签到,获得积分0
8秒前
9秒前
9秒前
Ava应助高高的不悔采纳,获得10
9秒前
科研澄澄完成签到,获得积分10
10秒前
10秒前
10秒前
今后应助阔达荣轩采纳,获得10
11秒前
11秒前
深情安青应助CX采纳,获得10
11秒前
耍酷的小土豆完成签到,获得积分10
12秒前
12秒前
英俊的沛容完成签到 ,获得积分10
12秒前
赘婿应助木桶人plus采纳,获得10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572