Defining colon cancer biomarkers by using deep learning

结直肠癌 医学 肿瘤科 深度学习 生物标志物 癌症 生物标志物发现 内科学 辅助治疗 人工智能 疾病 计算机科学 蛋白质组学 生物化学 基因 化学
作者
Adrian V. Specogna,Frank A. Sinicrope
出处
期刊:The Lancet [Elsevier]
卷期号:395 (10221): 314-316 被引量:11
标识
DOI:10.1016/s0140-6736(20)30034-9
摘要

Refined approaches are needed to better risk-stratify patients with colorectal cancer for prognosis. No predictive biomarkers of treatment efficacy have yet been identified in patients with non-metastatic disease. Ole-Johan Skrede and colleagues 1 Skrede O-J De Raedt S Kleppe A et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet. 2020; 395: 350-360 Summary Full Text Full Text PDF PubMed Scopus (191) Google Scholar in The Lancet report on a computer-generated biomarker, the DoMore-v1-colorectal cancer (DoMore-v1-CRC) classifier, which was derived from conventionally stained histopathological images by using deep learning methods. This study adds value to the application of deep learning methods in cancer research as it stimulates a discussion on the potential use of automated methods to generate new information from existing pathological data. Deep learning for prediction of colorectal cancer outcome: a discovery and validation studyA clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lemonfang完成签到,获得积分10
1秒前
3秒前
三年半完成签到,获得积分10
4秒前
hhhh完成签到,获得积分10
5秒前
6秒前
亮liang完成签到,获得积分10
7秒前
hhhh发布了新的文献求助10
10秒前
Ning00000完成签到 ,获得积分10
11秒前
寒冷萤完成签到 ,获得积分10
11秒前
SciGPT应助asd采纳,获得10
12秒前
13秒前
yyl完成签到 ,获得积分10
13秒前
qiu完成签到 ,获得积分10
14秒前
无私的含海完成签到,获得积分10
14秒前
Zyk完成签到,获得积分10
14秒前
Lee关注了科研通微信公众号
15秒前
16秒前
调皮的又菱完成签到,获得积分10
19秒前
21秒前
23秒前
情怀应助欣喜落雁采纳,获得10
23秒前
小刘完成签到,获得积分10
25秒前
曾经晓亦发布了新的文献求助10
26秒前
27秒前
27秒前
Akim应助keikeizi采纳,获得20
27秒前
情怀应助www采纳,获得30
28秒前
hhhh关注了科研通微信公众号
29秒前
29秒前
30秒前
坚强白玉完成签到,获得积分10
31秒前
35秒前
35秒前
天天完成签到,获得积分10
36秒前
清爽小白菜完成签到,获得积分10
36秒前
Akim应助huco采纳,获得10
37秒前
www完成签到,获得积分20
38秒前
38秒前
keikeizi发布了新的文献求助20
40秒前
Karry完成签到 ,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140260
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797743
捐赠科研通 2447527
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194