Distribution-Invariant Deep Belief Network for Intelligent Fault Diagnosis of Machines Under New Working Conditions

Softmax函数 深信不疑网络 人工智能 不变(物理) 限制玻尔兹曼机 分类器(UML) 模式识别(心理学) 计算机科学 玻尔兹曼机 深度学习 特征提取 特征(语言学) 数学 数学物理 语言学 哲学
作者
Saibo Xing,Yaguo Lei,Shuhui Wang,Feng Jia
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 2617-2625 被引量:86
标识
DOI:10.1109/tie.2020.2972461
摘要

As a deep learning model, a deep belief network (DBN) consists of multiple restricted Boltzmann machines (RBMs). Based on DBN, many intelligent fault diagnosis methods are proposed. However, these methods seldom considered the appearance of new working conditions during the operation of real machines. Varying working conditions lead to a change of feature distributions and finally result in low diagnosis accuracies. Therefore, we propose a distribution-invariant DBN (DIDBN) to learn distribution-invariant features directly from raw vibration data. DIDBN consists of a locally connected RBM (LCRBM) layer, a fully connected RBM layer, and an RBM layer with a mean discrepancy maximum (MDM-RBM). The LCRBM layer is designed with a locally connected structure. By proposing MDM, the MDM-RBM layer is able to obtain features that have close distributions under varying working conditions. Followed by a softmax classifier, DIDBN is able to recognize faults. The proposed method is applied to two diagnosis cases. Results verify that DIDBN is able to learn distribution-invariant features and achieve higher diagnosis accuracies than recently proposed methods. Moreover, the reason why DIDBN is able to learn distribution-invariant features is explained by visualizing the feature learning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lydy1993完成签到,获得积分10
1秒前
2秒前
滴滴哒哒完成签到 ,获得积分10
2秒前
SciGPT应助波波玛奇朵采纳,获得10
4秒前
戏言121完成签到,获得积分10
4秒前
迷人的映雁完成签到,获得积分10
5秒前
5秒前
美丽的之双完成签到,获得积分10
6秒前
阿会完成签到,获得积分10
6秒前
wqm完成签到,获得积分10
7秒前
戏言121发布了新的文献求助10
8秒前
8秒前
9秒前
优雅的流沙完成签到 ,获得积分10
10秒前
猫的海完成签到,获得积分10
10秒前
10秒前
Eason Liu完成签到,获得积分0
11秒前
Wendy1204完成签到,获得积分20
11秒前
Hello应助654采纳,获得10
11秒前
咩咩羊完成签到,获得积分10
11秒前
15秒前
lianqing完成签到,获得积分10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
16秒前
RC_Wang应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
hh应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得30
16秒前
16秒前
Leif应助科研通管家采纳,获得20
16秒前
16秒前
17秒前
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824