Distribution-Invariant Deep Belief Network for Intelligent Fault Diagnosis of Machines Under New Working Conditions

Softmax函数 深信不疑网络 人工智能 不变(物理) 限制玻尔兹曼机 分类器(UML) 模式识别(心理学) 计算机科学 玻尔兹曼机 深度学习 特征提取 特征(语言学) 数学 数学物理 语言学 哲学
作者
Saibo Xing,Yaguo Lei,Shuhui Wang,Feng Jia
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 2617-2625 被引量:86
标识
DOI:10.1109/tie.2020.2972461
摘要

As a deep learning model, a deep belief network (DBN) consists of multiple restricted Boltzmann machines (RBMs). Based on DBN, many intelligent fault diagnosis methods are proposed. However, these methods seldom considered the appearance of new working conditions during the operation of real machines. Varying working conditions lead to a change of feature distributions and finally result in low diagnosis accuracies. Therefore, we propose a distribution-invariant DBN (DIDBN) to learn distribution-invariant features directly from raw vibration data. DIDBN consists of a locally connected RBM (LCRBM) layer, a fully connected RBM layer, and an RBM layer with a mean discrepancy maximum (MDM-RBM). The LCRBM layer is designed with a locally connected structure. By proposing MDM, the MDM-RBM layer is able to obtain features that have close distributions under varying working conditions. Followed by a softmax classifier, DIDBN is able to recognize faults. The proposed method is applied to two diagnosis cases. Results verify that DIDBN is able to learn distribution-invariant features and achieve higher diagnosis accuracies than recently proposed methods. Moreover, the reason why DIDBN is able to learn distribution-invariant features is explained by visualizing the feature learning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游侠客完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
彭于晏应助西子阳采纳,获得10
2秒前
3秒前
4秒前
CAOHOU应助余温煮鱼采纳,获得10
4秒前
科研通AI2S应助wyx采纳,获得10
5秒前
HUIZHEV5发布了新的文献求助10
5秒前
CN_PH发布了新的文献求助10
6秒前
6秒前
6秒前
SHIFARG完成签到,获得积分10
6秒前
7秒前
小丛完成签到 ,获得积分10
7秒前
7秒前
7秒前
laochen发布了新的文献求助10
7秒前
8秒前
新手鼓手发布了新的文献求助10
8秒前
9秒前
安详的语蕊完成签到,获得积分10
9秒前
上官若男应助gaga采纳,获得10
10秒前
大模型应助科研通管家采纳,获得30
10秒前
wanci应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得80
11秒前
无花果应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070