Distribution-Invariant Deep Belief Network for Intelligent Fault Diagnosis of Machines Under New Working Conditions

Softmax函数 深信不疑网络 人工智能 不变(物理) 限制玻尔兹曼机 分类器(UML) 模式识别(心理学) 计算机科学 玻尔兹曼机 深度学习 特征提取 特征(语言学) 数学 数学物理 语言学 哲学
作者
Saibo Xing,Yaguo Lei,Shuhui Wang,Feng Jia
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 2617-2625 被引量:86
标识
DOI:10.1109/tie.2020.2972461
摘要

As a deep learning model, a deep belief network (DBN) consists of multiple restricted Boltzmann machines (RBMs). Based on DBN, many intelligent fault diagnosis methods are proposed. However, these methods seldom considered the appearance of new working conditions during the operation of real machines. Varying working conditions lead to a change of feature distributions and finally result in low diagnosis accuracies. Therefore, we propose a distribution-invariant DBN (DIDBN) to learn distribution-invariant features directly from raw vibration data. DIDBN consists of a locally connected RBM (LCRBM) layer, a fully connected RBM layer, and an RBM layer with a mean discrepancy maximum (MDM-RBM). The LCRBM layer is designed with a locally connected structure. By proposing MDM, the MDM-RBM layer is able to obtain features that have close distributions under varying working conditions. Followed by a softmax classifier, DIDBN is able to recognize faults. The proposed method is applied to two diagnosis cases. Results verify that DIDBN is able to learn distribution-invariant features and achieve higher diagnosis accuracies than recently proposed methods. Moreover, the reason why DIDBN is able to learn distribution-invariant features is explained by visualizing the feature learning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
02发布了新的文献求助10
3秒前
槿萱完成签到,获得积分10
3秒前
jjf发布了新的文献求助10
3秒前
听话的延恶完成签到 ,获得积分10
4秒前
共享精神应助舒心的冰烟采纳,获得10
5秒前
nnnd77完成签到,获得积分10
5秒前
6秒前
烟花应助woodenfish采纳,获得10
7秒前
五块墓碑完成签到,获得积分10
8秒前
9秒前
灵巧胜发布了新的文献求助10
9秒前
9秒前
bab发布了新的文献求助10
10秒前
陌路完成签到,获得积分10
11秒前
情怀应助大侦探皮卡丘采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
JamesPei应助科研通管家采纳,获得20
13秒前
Tourist应助科研通管家采纳,获得10
13秒前
ma发布了新的文献求助10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得20
13秒前
Zx_1993应助科研通管家采纳,获得20
13秒前
隐形曼青应助jjf采纳,获得30
13秒前
Tourist应助科研通管家采纳,获得10
13秒前
精明凡双应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
淡定的勒应助科研通管家采纳,获得10
13秒前
Tourist应助科研通管家采纳,获得10
13秒前
77发布了新的文献求助10
13秒前
自信的蓝天完成签到,获得积分20
13秒前
Ava应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得200
14秒前
wwz应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298490
求助须知:如何正确求助?哪些是违规求助? 4447022
关于积分的说明 13841382
捐赠科研通 4332463
什么是DOI,文献DOI怎么找? 2378206
邀请新用户注册赠送积分活动 1373449
关于科研通互助平台的介绍 1339015