What Information Do Shoppers Share? The Effect of Personnel-, Retailer-, and Country-Trust on Willingness to Share Information

业务 背景(考古学) 宏观层面 个人可识别信息 营销 产品(数学) 经济 古生物学 经济体制 几何学 计算机安全 数学 计算机科学 生物
作者
Monica Grosso,Sandro Castaldo,Hua Li,Bart Larivière
出处
期刊:Journal of Retailing [Elsevier]
卷期号:96 (4): 524-547 被引量:30
标识
DOI:10.1016/j.jretai.2020.08.002
摘要

The relationship between consumers’ privacy concerns and their willingness to disclose personal information to retailers is more complex than a simple negative one. The multi-faced context, within which privacy decisions take place, shapes and bounds this relationship. Drawing on privacy contextual integrity theory, we model the privacy decisions as influenced by individuals’ multilevel trusting surroundings, which include trust in a retailer and in its personnel at the micro-level, and trust in a country at the macro-level. Based on 22,050 survey data across seven product categories in fourteen countries, our Bayesian multilevel modeling reveals that micro- and macro-level trust may promote consumers’ disclosure intentions via three mechanisms: (1) micro-level trust positive effect on consumers’ willingness to disclose their data; (2) micro-level trust effect by attenuating privacy concerns’ negative influence on this willingness; and (3) the positive indirect effect of trust in the country on both the direct and indirect impacts of trust in a retailer and in its personnel. Interestingly, trust’s direct effects are found in all the investigated types of information (i.e., identification, medical, financial, locational, demographic, lifestyle, and media usage data), whereas the indirect effects are found to vary across information types. Our post-hoc cluster analysis shows that different retail contexts can be classified into three clusters and help retailers understand whether they should invest in developing both trust in their retail company and in their personnel, or mainly on one of the two. By taking different types of trust and context effects into consideration, our findings help different retailers encourage customers to disclose their data with them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Iva完成签到 ,获得积分10
1秒前
1秒前
潍澤完成签到,获得积分10
1秒前
范小雨完成签到,获得积分10
1秒前
务实时光发布了新的文献求助10
2秒前
dagongren发布了新的文献求助10
3秒前
大宝君应助curlycai采纳,获得20
3秒前
落水应助kevindm采纳,获得10
3秒前
Blue完成签到 ,获得积分10
3秒前
3秒前
minmin完成签到,获得积分10
3秒前
hulahula发布了新的文献求助10
4秒前
sanmumu完成签到,获得积分10
4秒前
挡挡完成签到,获得积分10
4秒前
Zhang发布了新的文献求助10
4秒前
5秒前
潇洒的寒梅关注了科研通微信公众号
5秒前
甩看文献发布了新的文献求助10
5秒前
健壮的芷容完成签到,获得积分10
5秒前
5秒前
6秒前
小马甲应助刘明采纳,获得10
6秒前
于豪杰发布了新的文献求助10
6秒前
善学以致用应助冀丂采纳,获得10
6秒前
6秒前
天月完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
田様应助sdkumamon采纳,获得10
7秒前
慕青应助NXK采纳,获得10
7秒前
gdh完成签到,获得积分10
7秒前
8秒前
科研木发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
脑洞疼应助清风朗月采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919