What Information Do Shoppers Share? The Effect of Personnel-, Retailer-, and Country-Trust on Willingness to Share Information

业务 背景(考古学) 宏观层面 个人可识别信息 营销 产品(数学) 经济 古生物学 经济体制 几何学 计算机安全 数学 计算机科学 生物
作者
Monica Grosso,Sandro Castaldo,Hua Li,Bart Larivière
出处
期刊:Journal of Retailing [Elsevier]
卷期号:96 (4): 524-547 被引量:30
标识
DOI:10.1016/j.jretai.2020.08.002
摘要

The relationship between consumers’ privacy concerns and their willingness to disclose personal information to retailers is more complex than a simple negative one. The multi-faced context, within which privacy decisions take place, shapes and bounds this relationship. Drawing on privacy contextual integrity theory, we model the privacy decisions as influenced by individuals’ multilevel trusting surroundings, which include trust in a retailer and in its personnel at the micro-level, and trust in a country at the macro-level. Based on 22,050 survey data across seven product categories in fourteen countries, our Bayesian multilevel modeling reveals that micro- and macro-level trust may promote consumers’ disclosure intentions via three mechanisms: (1) micro-level trust positive effect on consumers’ willingness to disclose their data; (2) micro-level trust effect by attenuating privacy concerns’ negative influence on this willingness; and (3) the positive indirect effect of trust in the country on both the direct and indirect impacts of trust in a retailer and in its personnel. Interestingly, trust’s direct effects are found in all the investigated types of information (i.e., identification, medical, financial, locational, demographic, lifestyle, and media usage data), whereas the indirect effects are found to vary across information types. Our post-hoc cluster analysis shows that different retail contexts can be classified into three clusters and help retailers understand whether they should invest in developing both trust in their retail company and in their personnel, or mainly on one of the two. By taking different types of trust and context effects into consideration, our findings help different retailers encourage customers to disclose their data with them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Dailalala发布了新的文献求助10
刚刚
优雅枫叶完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
顺心含蕾应助EIS采纳,获得10
3秒前
B站萧亚轩发布了新的文献求助10
4秒前
安元菱完成签到 ,获得积分10
4秒前
4秒前
4秒前
冷静宛海完成签到,获得积分10
5秒前
5秒前
6秒前
fugdu发布了新的文献求助10
6秒前
时舒完成签到 ,获得积分10
6秒前
自信的柠檬完成签到,获得积分20
7秒前
8秒前
善学以致用应助ABC的风格采纳,获得10
9秒前
baron_lin发布了新的文献求助10
9秒前
研友_LN7x6n发布了新的文献求助30
10秒前
852应助风风采纳,获得10
10秒前
Dailalala完成签到,获得积分10
10秒前
11秒前
安静心情发布了新的文献求助10
11秒前
丘比特应助竞鹤采纳,获得10
11秒前
香蕉觅云应助高很帅采纳,获得10
11秒前
12秒前
12秒前
司空天磊发布了新的文献求助10
12秒前
Hydaniel发布了新的文献求助10
12秒前
dd36完成签到,获得积分10
13秒前
昵称11发布了新的文献求助10
15秒前
Owen应助Huguizhou采纳,获得10
15秒前
韩涵完成签到 ,获得积分10
15秒前
充电宝应助2499297293采纳,获得10
15秒前
aich完成签到,获得积分10
15秒前
鲅鱼圈完成签到,获得积分10
16秒前
17秒前
一朵梅花完成签到,获得积分10
17秒前
咕噜仔完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342