Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields

量子产额 荧光 量子点 检出限 材料科学 水热合成 产量(工程) 碳纤维 线性范围 计算机科学 热液循环 纳米技术 化学 化学工程 色谱法 物理 工程类 复合数 复合材料 量子力学 冶金
作者
Yu Han,Bijun Tang,Liang Wang,Hong Bao,Yuhao Lu,Cuntai Guan,Liang Zhang,Mengying Le,Zheng Liu,Minghong Wu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (11): 14761-14768 被引量:212
标识
DOI:10.1021/acsnano.0c01899
摘要

Knowing the correlation of reaction parameters in the preparation process of carbon dots (CDs) is essential for optimizing the synthesis strategy, exploring exotic properties, and exploiting potential applications. However, the integrated screening experimental data on the synthesis of CDs are huge and noisy. Machine learning (ML) has recently been successfully used for the screening of high-performance materials. Here, we demonstrate how ML-based techniques can offer insight into the successful prediction, optimization, and acceleration of CDs' synthesis process. A regression ML model on hydrothermal-synthesized CDs is established capable of revealing the relationship between various synthesis parameters and experimental outcomes as well as enhancing the process-related properties such as the fluorescent quantum yield (QY). CDs exhibiting a strong green emission with QY up to 39.3% are obtained through the combined ML guidance and experimental verification. The mass of precursors and the volume of alkaline catalysts are identified as the most important features in the synthesis of high-QY CDs by the trained ML model. The CDs are applied as an ultrasensitive fluorescence probe for monitoring the Fe3+ ion because of their superior optical behaviors. The probe exhibits the linear response to the Fe3+ ion with a wide concentration range (0-150 μM), and its detection limit is 0.039 μM. Our findings demonstrate the great capability of ML to guide the synthesis of high-quality CDs, accelerating the development of intelligent material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Tina采纳,获得30
刚刚
2秒前
3秒前
4秒前
ManLi发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
WangPeidi发布了新的文献求助30
5秒前
6秒前
7秒前
McbxM完成签到,获得积分10
7秒前
樱桃完成签到 ,获得积分10
7秒前
王璐发布了新的文献求助20
9秒前
科研通AI6应助清脆糖豆采纳,获得10
10秒前
补药学习完成签到,获得积分10
11秒前
11秒前
好样的发布了新的文献求助10
11秒前
lsy发布了新的文献求助10
12秒前
打打应助北柠采纳,获得10
13秒前
玛卡巴卡发布了新的文献求助10
14秒前
lzr发布了新的文献求助10
14秒前
15秒前
科研通AI6应助清脆糖豆采纳,获得10
15秒前
HXZR0924发布了新的文献求助10
15秒前
15秒前
华仔应助好样的采纳,获得10
17秒前
yjf,123发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
zf2023发布了新的文献求助30
20秒前
21秒前
lzr完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
床头经济学完成签到,获得积分10
23秒前
23秒前
25秒前
toxin37发布了新的文献求助10
25秒前
SciGPT应助lkkkkkkkkkk采纳,获得10
25秒前
SciGPT应助李勤_秦礼采纳,获得10
25秒前
ChatGPT发布了新的文献求助10
25秒前
酷酷梦旋完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039