亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields

量子产额 荧光 量子点 检出限 材料科学 水热合成 产量(工程) 碳纤维 线性范围 计算机科学 热液循环 纳米技术 化学 化学工程 色谱法 物理 工程类 复合数 复合材料 量子力学 冶金
作者
Yu Han,Bijun Tang,Liang Wang,Hong Bao,Yuhao Lu,Cuntai Guan,Liang Zhang,Mengying Le,Zheng Liu,Minghong Wu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (11): 14761-14768 被引量:229
标识
DOI:10.1021/acsnano.0c01899
摘要

Knowing the correlation of reaction parameters in the preparation process of carbon dots (CDs) is essential for optimizing the synthesis strategy, exploring exotic properties, and exploiting potential applications. However, the integrated screening experimental data on the synthesis of CDs are huge and noisy. Machine learning (ML) has recently been successfully used for the screening of high-performance materials. Here, we demonstrate how ML-based techniques can offer insight into the successful prediction, optimization, and acceleration of CDs' synthesis process. A regression ML model on hydrothermal-synthesized CDs is established capable of revealing the relationship between various synthesis parameters and experimental outcomes as well as enhancing the process-related properties such as the fluorescent quantum yield (QY). CDs exhibiting a strong green emission with QY up to 39.3% are obtained through the combined ML guidance and experimental verification. The mass of precursors and the volume of alkaline catalysts are identified as the most important features in the synthesis of high-QY CDs by the trained ML model. The CDs are applied as an ultrasensitive fluorescence probe for monitoring the Fe3+ ion because of their superior optical behaviors. The probe exhibits the linear response to the Fe3+ ion with a wide concentration range (0-150 μM), and its detection limit is 0.039 μM. Our findings demonstrate the great capability of ML to guide the synthesis of high-quality CDs, accelerating the development of intelligent material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
11秒前
12秒前
17秒前
科研通AI6.1应助啵子采纳,获得10
17秒前
121发布了新的文献求助10
18秒前
熊仔一百完成签到,获得积分0
18秒前
18秒前
19秒前
L坨坨完成签到,获得积分10
20秒前
23秒前
Tang发布了新的文献求助30
24秒前
26秒前
29秒前
31秒前
32秒前
wcx完成签到,获得积分10
32秒前
36秒前
38秒前
danruolan完成签到,获得积分10
38秒前
星辰大海应助科研通管家采纳,获得10
39秒前
赘婿应助科研通管家采纳,获得10
39秒前
充电宝应助科研通管家采纳,获得10
39秒前
44秒前
寻道图强应助周周采纳,获得50
48秒前
黄果兰完成签到,获得积分10
48秒前
54秒前
Zzzzzzz完成签到 ,获得积分10
54秒前
59秒前
1分钟前
1分钟前
hhh发布了新的文献求助10
1分钟前
Miracle完成签到,获得积分10
1分钟前
Czl完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
hhh完成签到,获得积分10
1分钟前
热情的觅云完成签到 ,获得积分10
1分钟前
vanilla完成签到,获得积分10
1分钟前
啵子发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780002
求助须知:如何正确求助?哪些是违规求助? 5651336
关于积分的说明 15452646
捐赠科研通 4910879
什么是DOI,文献DOI怎么找? 2643086
邀请新用户注册赠送积分活动 1590697
关于科研通互助平台的介绍 1545154