A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus

计算机科学 块链 一致性算法 计算机安全 计算机网络 数据科学
作者
Yuzheng Li,Chuan Chen,Nan Liu,Huawei Huang,Zibin Zheng,Yan Qiang
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 234-241 被引量:418
标识
DOI:10.1109/mnet.011.2000263
摘要

Federated learning has been widely studied and applied to various scenarios, such as financial credit, medical identification, and so on. Under these settings, federated learning protects users from exposing their private data, while cooperatively training a shared machine learning algorithm model (i.e., the global model) for a variety of realworld applications. The only data exchanged is the gradient of the model or the updated model (i.e., the local model update). However, the security of federated learning is increasingly being questioned, due to the malicious clients or central servers' constant attack on the global model or user privacy data. To address these security issues, we propose a decentralized federated learning framework based on blockchain, that is, a Block-chain-based Federated Learning framework with Committee consensus (BFLC). Without a centralized server, the framework uses blockchain for the global model storage and the local model update exchange. To enable the proposed BFLC, we also devise an innovative committee consensus mechanism, which can effectively reduce the amount of consensus computing and reduce malicious attacks. We then discuss the scalability of BFLC, including theoretical security, storage optimization, and incentives. Finally, based on a FISCO blockchain system, we perform experiments using an AlexNet model on several frameworks with a real-world dataset FEMNIST. The experimental results demonstrate the effectiveness and security of the BFLC framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好纠结伦完成签到,获得积分10
刚刚
四眼发布了新的文献求助10
1秒前
打打应助善良衬衫采纳,获得10
1秒前
2秒前
2秒前
heyheybaby发布了新的文献求助10
2秒前
耳机单蹦发布了新的文献求助10
2秒前
2秒前
3秒前
小钱全完成签到,获得积分10
3秒前
糊糊发布了新的文献求助10
4秒前
搜集达人应助甘博采纳,获得10
4秒前
4秒前
再吃一颗苹果完成签到,获得积分10
5秒前
sh完成签到,获得积分10
5秒前
JJy完成签到 ,获得积分10
5秒前
5秒前
yookia应助牛BO采纳,获得10
7秒前
giggity10086发布了新的文献求助10
7秒前
8秒前
斯文败类应助zjl采纳,获得10
9秒前
zhuboujs发布了新的文献求助10
9秒前
陆峙秀发布了新的文献求助10
10秒前
zzx发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
tree完成签到,获得积分10
11秒前
轻歌水越发布了新的文献求助10
11秒前
小老虎Milly完成签到,获得积分10
12秒前
12秒前
波西米亚完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
蘸水发布了新的文献求助10
14秒前
15秒前
自然的沛山完成签到 ,获得积分10
16秒前
柯一一应助文艺寄灵采纳,获得10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785