Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance

材料科学 自愈水凝胶 纳米复合材料 复合材料 韧性 极限抗拉强度 纳米颗粒 离子键合 纳米技术 高分子化学 离子 物理 量子力学
作者
Shi‐Neng Li,Baoqiang Li,Zhi-Ran Yu,Li‐Xiu Gong,Qiao-Qi Xia,Yujie Feng,Dechang Jia,Yu Zhou,Long‐Cheng Tang
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:195: 108173-108173 被引量:66
标识
DOI:10.1016/j.compscitech.2020.108173
摘要

Hydrogels with a combination of high mechanical properties and excellent electrical conductivity are promising for soft and wearable electronics devices. However, the trade-off between poor strength/toughness and high electrical resistance of the hydrogels severely hamper their practical application in diverse areas. In this work, we reported a facile and effective strategy for fabricating mechanically robust and electrically conductive nanocomposite hydrogels via incorporating chitosan in-situ grafted magnetite nanoparticles combined with multiple ionic-covalent interactions. The obtained nanocomposite hydrogel delivers a remarkable mechanical strength up to 2.33 MPa and high toughness of 18.18 MJ m-3 at a relatively high water content (80 wt%). Based on the creep/recovery experimental results and analysis (Burger's model and Weibull distribution function), the effect of multiple ionic-covalent interactions among the double-networks and chitosan in-situ grafted nanoparticles on the viscoelastic behavior of the hydrogel was discussed and clarified. In addition, the resultant nanocomposite hydrogel exhibits sensitive strain-induced resistance change under both compressive and tensile stress as well as outstanding stability and repeatability, which can accurately and repeatedly monitor both large mechanical deformation (e.g. tensile strain up to 600%) and human behaviors (e.g., motions of joints and facial expressions). This study offers a new scenario to design and develop a mechanically robust hydrogel with sensitive strain-responsive resistance, showing potential applications in electric skin, motion detection, wearable electronics, etc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
假面绅士发布了新的文献求助10
刚刚
Polaris发布了新的文献求助10
1秒前
xjcy应助予秋采纳,获得10
2秒前
陀思妥耶夫斯基完成签到 ,获得积分10
2秒前
木子李发布了新的文献求助10
3秒前
sjie发布了新的文献求助10
4秒前
喻文州完成签到 ,获得积分10
4秒前
5秒前
xjcy应助Lzk采纳,获得10
5秒前
6秒前
PhD-SCAU完成签到,获得积分10
6秒前
7秒前
QQ完成签到 ,获得积分10
8秒前
8秒前
8秒前
调研昵称发布了新的文献求助10
9秒前
俏皮的涵瑶完成签到,获得积分10
9秒前
时尚的冷玉完成签到,获得积分10
10秒前
假面绅士发布了新的文献求助10
10秒前
Wang发布了新的文献求助10
11秒前
好远的梦发布了新的文献求助10
12秒前
13秒前
逮劳完成签到 ,获得积分10
13秒前
木子李完成签到,获得积分10
14秒前
今后应助寒霁采纳,获得10
15秒前
16秒前
糕糕完成签到,获得积分10
16秒前
番茄完成签到,获得积分10
16秒前
18秒前
Nancy0818完成签到 ,获得积分10
20秒前
假面绅士发布了新的文献求助10
21秒前
24秒前
Singularity应助俭朴的发带采纳,获得10
24秒前
袁姣发布了新的文献求助10
27秒前
听话的大碗完成签到 ,获得积分10
27秒前
yaozi完成签到,获得积分10
27秒前
小墨完成签到,获得积分10
28秒前
假面绅士发布了新的文献求助10
28秒前
30秒前
31秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082716
求助须知:如何正确求助?哪些是违规求助? 2736007
关于积分的说明 7539649
捐赠科研通 2385530
什么是DOI,文献DOI怎么找? 1264933
科研通“疑难数据库(出版商)”最低求助积分说明 612857
版权声明 597685