Surface‐Enhanced Raman Spectroscopy: General Introduction

概括性 拉曼光谱 纳米技术 表面增强拉曼光谱 纳米结构 光谱学 材料科学 化学 物理 光学 拉曼散射 心理学 量子力学 心理治疗师
作者
Song‐Yuan Ding,Xuemin Zhang,En‐Ming You,Bin Ren,Zhong‐Qun Tian
出处
期刊:Encyclopedia of Analytical Chemistry 卷期号:: 1-42 被引量:12
标识
DOI:10.1002/9780470027318.a9276.pub2
摘要

Abstract The surface‐enhanced Raman scattering effect refers to the effect was discovered in the mid‐1970s, by which the intrinsically low detection sensitivity of Raman spectroscopy is no longer a fatal disadvantage for this analytical tool. As a general introduction of surface‐enhanced Raman spectroscopy (SERS), the over 40‐year history of SERS is first overviewed, showing that SERS has gone through a tortuous pathway to develop into a powerful diagnostic technique. We then describe the principle of SERS and enhancement mechanisms, illustrating that SERS is mainly surface plasmon resonance (SPR) and nanostructure‐enhancement phenomenon. The SERS measurement procedures, in particular the preparation of various SERS active substrates, are discussed. Based on the four important criteria in analytical science, i.e. detection sensitivity (energetic, spatial, and temporal), resolution, generality, and reliability, we highlight two different approaches to utilize the strength and offset the weakness of SERS. With the enormously high sensitivity and spectral resolution, SERS has been applied successfully to surface analysis and trace analysis by gaining meaningful information from an extremely small quantity of species even down to single molecules. To significantly improve the surface generality and spatial resolution, tip‐enhanced Raman spectroscopy (TERS) was invented in 2000. To greatly improve the material generality and measurement reliability, shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) was introduced in 2010. Finally, prospective developments of SERS in substrates, methods, and theory are briefly discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈柳发布了新的文献求助10
1秒前
haveatry发布了新的文献求助10
2秒前
星辰大海应助houfengyun328采纳,获得10
3秒前
学术星星关注了科研通微信公众号
3秒前
4秒前
烟花应助Monster采纳,获得10
5秒前
星辰大海应助mmmmm采纳,获得10
6秒前
majf发布了新的文献求助10
6秒前
活泼的向日葵完成签到,获得积分10
7秒前
7秒前
Sugaryeah完成签到,获得积分10
7秒前
故意的小熊猫完成签到 ,获得积分10
7秒前
QQQ发布了新的文献求助10
8秒前
cnd完成签到 ,获得积分10
8秒前
元谷雪应助Sssssss采纳,获得10
9秒前
追寻紫安发布了新的文献求助10
9秒前
小二郎应助petli采纳,获得10
10秒前
11秒前
爆米花应助ZHN采纳,获得10
12秒前
小晚风完成签到,获得积分10
12秒前
盐植物发布了新的文献求助10
12秒前
13秒前
13秒前
Hello应助QQQ采纳,获得10
15秒前
莫华龙完成签到,获得积分10
15秒前
11发布了新的文献求助10
18秒前
18秒前
forest发布了新的文献求助10
18秒前
liyanglin完成签到 ,获得积分10
19秒前
19秒前
江秋寒完成签到,获得积分20
19秒前
万能图书馆应助顺遂采纳,获得10
20秒前
王薯片儿发布了新的文献求助10
21秒前
21秒前
24秒前
月神满月完成签到,获得积分10
24秒前
狂野果汁发布了新的文献求助10
24秒前
江秋寒发布了新的文献求助10
25秒前
我是老大应助zombie采纳,获得10
25秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138303
求助须知:如何正确求助?哪些是违规求助? 2789341
关于积分的说明 7790881
捐赠科研通 2445588
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601065