清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations

纳维-斯托克斯方程组 人工神经网络 不可压缩流 压缩性 斯托克斯流 应用数学 压力修正法 来自Navier-Stokes方程的Hagen-Poiseuille流 流量(数学) 数学 经典力学 计算机科学 数学分析 物理 机械 人工智能
作者
Xiaowei Jin,Shengze Cai,Hui Li,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:426: 109951-109951 被引量:649
标识
DOI:10.1016/j.jcp.2020.109951
摘要

In the last 50 years there has been a tremendous progress in solving numerically the Navier-Stokes equations using finite differences, finite elements, spectral, and even meshless methods. Yet, in many real cases, we still cannot incorporate seamlessly (multi-fidelity) data into existing algorithms, and for industrial-complexity applications the mesh generation is time consuming and still an art. Moreover, solving ill-posed problems (e.g., lacking boundary conditions) or inverse problems is often prohibitively expensive and requires different formulations and new computer codes. Here, we employ physics-informed neural networks (PINNs), encoding the governing equations directly into the deep neural network via automatic differentiation, to overcome some of the aforementioned limitations for simulating incompressible laminar and turbulent flows. We develop the Navier-Stokes flow nets (NSFnets) by considering two different mathematical formulations of the Navier-Stokes equations: the velocity-pressure (VP) formulation and the vorticity-velocity (VV) formulation. Since this is a new approach, we first select some standard benchmark problems to assess the accuracy, convergence rate, computational cost and flexibility of NSFnets; analytical solutions and direct numerical simulation (DNS) databases provide proper initial and boundary conditions for the NSFnet simulations. The spatial and temporal coordinates are the inputs of the NSFnets, while the instantaneous velocity and pressure fields are the outputs for the VP-NSFnet, and the instantaneous velocity and vorticity fields are the outputs for the VV-NSFnet. This is unsupervised learning and, hence, no labeled data are required beyond boundary and initial conditions and the fluid properties. The residuals of the VP or VV governing equations, together with the initial and boundary conditions, are embedded into the loss function of the NSFnets. No data is provided for the pressure to the VP-NSFnet, which is a hidden state and is obtained via the incompressibility constraint without extra computational cost. Unlike the traditional numerical methods, NSFnets inherit the properties of neural networks (NNs), hence the total error is composed of the approximation, the optimization, and the generalization errors. Here, we empirically attempt to quantify these errors by varying the sampling ("residual") points, the iterative solvers, and the size of the NN architecture. For the laminar flow solutions, we show that both the VP and the VV formulations are comparable in accuracy but their best performance corresponds to different NN architectures. The initial convergence rate is fast but the error eventually saturates to a plateau due to the dominance of the optimization error. For the turbulent channel flow, we show that NSFnets can sustain turbulence at Reτ∼1,000, but due to expensive training we only consider part of the channel domain and enforce velocity boundary conditions on the subdomain boundaries provided by the DNS data base. We also perform a systematic study on the weights used in the loss function for balancing the data and physics components, and investigate a new way of computing the weights dynamically to accelerate training and enhance accuracy. In the last part, we demonstrate how NSFnets should be used in practice, namely for ill-posed problems with incomplete or noisy boundary conditions as well as for inverse problems. We obtain reasonably accurate solutions for such cases as well without the need to change the NSFnets and at the same computational cost as in the forward well-posed problems. We also present a simple example of transfer learning that will aid in accelerating the training of NSFnets for different parameter settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小布完成签到 ,获得积分0
7秒前
Shyee完成签到 ,获得积分10
9秒前
Hiram完成签到,获得积分10
10秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Ortho完成签到 ,获得积分10
24秒前
辣小扬完成签到 ,获得积分10
25秒前
迅速的幻雪完成签到 ,获得积分10
26秒前
酷波er应助wyx采纳,获得10
27秒前
刘总完成签到,获得积分10
30秒前
yunt完成签到 ,获得积分10
30秒前
32秒前
ZZzz完成签到 ,获得积分10
34秒前
23333完成签到,获得积分10
36秒前
wujuan1606完成签到 ,获得积分10
41秒前
Julien完成签到,获得积分10
41秒前
50秒前
53秒前
美丽的楼房完成签到 ,获得积分10
54秒前
小小完成签到 ,获得积分10
59秒前
雪山飞龙发布了新的文献求助10
1分钟前
伴奏小胖完成签到 ,获得积分10
1分钟前
淞淞于我完成签到 ,获得积分10
1分钟前
不知道完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
独立江湖女完成签到 ,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
五本笔记完成签到 ,获得积分10
1分钟前
千帆破浪完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
月儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
好运常在完成签到,获得积分10
1分钟前
wyx发布了新的文献求助10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015509
求助须知:如何正确求助?哪些是违规求助? 3555418
关于积分的说明 11318049
捐赠科研通 3288665
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012