化学
有机质
水解
废水
生物降解
污染物
环境化学
化学需氧量
无氧运动
降级(电信)
生化需氧量
制浆造纸工业
有机化学
环境科学
环境工程
生理学
电信
计算机科学
工程类
生物
作者
Zhiqiang Chen,Da Li,Qinxue Wen
标识
DOI:10.1016/j.scitotenv.2020.137995
摘要
Coal gasification wastewater (CGW) contains several types of aromatic pollutants, which impart high biotoxicity and reduce the quality of anaerobic treatment. Two types of hydrolysis acidification processes, namely microaerobic hybrid reactor (HA-1) and upflow anaerobic sludge blanket reactor (HA-2), were developed for pre-treatment before the anaerobic treatment. The changes in the dissolved organic matter and biotoxicity were investigated to comprehensively understand the degradation process. The results showed that HA-2 coupled with an anaerobic reactor achieved a 12.3% and 13.4% higher removal efficiency for chemical oxygen demand and total phenols, respectively, compared with the coupled process with HA-1. Furthermore, HA-2 could transform macromolecules into small molecules more efficiently and produce fewer intermediates. The coupled process with HA-2 preferentially removed complex aromatic substances with absorption wavelengths of 285 and 254 nm, according to the sequential orders interpreted from two-dimensional correlation spectroscopy. In addition, the results of fluorescence excitation-emission-matrix with regional integration analysis revealed that the contents of typical cyclic compounds in CGW, such as phenolic, heterocyclic, and polycyclic aromatic compounds were remarkably reduced by HA-2. In addition, HA-2 reduced the toxic unit value of CGW by 67.5% and increased the resazurin dehydrogenase activity of the sludge by 37.5% during CGW treatment, thus improving the biotoxicity removal and biodegradability. However, the coupled process with HA-2 did not significantly affect the "indirect estrogenic activity" of CGW. A Pearson correlation analysis indicated that spectral indicators, such as UV254 and ΦT,n, presented a high positive correlation with the reduction of acute toxicity and organics.
科研通智能强力驱动
Strongly Powered by AbleSci AI