DNAzyme–Metal–Organic Framework Two-Photon Nanoprobe for In situ Monitoring of Apoptosis-Associated Zn2+ in Living Cells and Tissues

纳米探针 脱氧核酶 荧光团 生物物理学 化学 细胞内 荧光 水溶液中的金属离子 金属 纳米技术 DNA 材料科学 生物化学 纳米颗粒 生物 物理 量子力学 有机化学
作者
Xinxin Shi,Hong‐Min Meng,Xin Geng,Lingbo Qu,Zhaohui Li
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:5 (10): 3150-3157 被引量:58
标识
DOI:10.1021/acssensors.0c01271
摘要

Monitoring Zn2+ in living cells is critical for fully elucidating the biological process of apoptosis. However, the quantitative intracellular sensing of Zn2+ using DNAzyme remains challenging because of issues related to penetration of the signal through tissue, targeted cellular uptake and activation, and susceptibility toward enzymatic degradation. In this study, we developed a novel phosphate ion-activated DNAzyme–metal–organic frameworks (MOFs) nanoprobe for two-photon imaging of Zn2+ in living cells and tissues. The design of this nanoprobe involved the loading of a Zn2+-specific, RNA-cleaving DNAzyme onto the MOFs through strong coordination between the phosphonate O atoms of the DNAzyme backbone and Zr atoms in the MOFs. This coordination restrained the extracellular activity of DNAzyme; however, after cell entry, the DNAzyme was released from the MOFs through a competitive binding by the phosphate ions present at a high intracellular concentration. Following their release, the two-photon (TP) fluorophore-labeled substrate strands of DNAzyme were cleaved with the aid of Zn2+, which resulted in a strong fluorescence signal. The incorporation of a TP fluorophore into the nanoprobe facilitated near-infrared excitation, which allowed the highly sensitive and specific imaging of Zn2+ in living cells and tissues at greater depths than possible previously. The TP-DNAzyme-MOFs nanoprobe achieved a low detection limit of 3.53 nM, extraordinary selectivity toward Zn2+, and a tissue signal penetration of 120 μm. More importantly, this nanoprobe was successfully used to monitor cell apoptosis, and this application of the DNAzyme-MOFs probe holds great potential for future use in biological studies and medical diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郦涔发布了新的文献求助10
1秒前
木易完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
shuang0116发布了新的文献求助10
4秒前
cyy发布了新的文献求助10
5秒前
zxy发布了新的文献求助30
6秒前
7秒前
treasure完成签到,获得积分20
7秒前
7秒前
cici完成签到,获得积分20
7秒前
8秒前
小飞侠发布了新的文献求助20
8秒前
tRNA完成签到,获得积分10
9秒前
赘婿应助遥远的猫采纳,获得10
10秒前
yu202408应助文文采纳,获得20
10秒前
Colo发布了新的文献求助10
11秒前
大胆仰完成签到,获得积分10
11秒前
13秒前
袁指导发布了新的文献求助10
14秒前
16秒前
淡淡宇宇宝宝完成签到,获得积分10
16秒前
18秒前
redz33完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
changping应助leslieo3o采纳,获得10
22秒前
Parsec完成签到 ,获得积分10
22秒前
饶渔发布了新的文献求助10
22秒前
24秒前
24秒前
Adios发布了新的文献求助30
24秒前
共享精神应助嘛籽m采纳,获得10
25秒前
Erica完成签到,获得积分10
26秒前
wobisheng发布了新的文献求助10
26秒前
26秒前
看不懂完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295760
求助须知:如何正确求助?哪些是违规求助? 4445117
关于积分的说明 13835465
捐赠科研通 4329601
什么是DOI,文献DOI怎么找? 2376742
邀请新用户注册赠送积分活动 1372009
关于科研通互助平台的介绍 1337360