内体
轴突引导
神经科学
细胞生物学
生物
轴突
受体
信号转导
内吞作用
环岛
细胞内
遗传学
作者
R. Jeroen Pasterkamp,Katja Burk
标识
DOI:10.1016/j.pneurobio.2020.101916
摘要
During the development of the nervous system, axons extend through complex environments. Growth cones at the axon tip allow axons to find and innervate their appropriate targets and form functional synapses. Axon pathfinding requires axons to respond to guidance signals and these cues need to be detected by specialized receptors followed by intracellular signal integration and translation. Several downstream signaling pathways have been identified for axon guidance receptors and it has become evident that these pathways are often initiated from intracellular vesicles called endosomes. Endosomes allow receptors to traffic intracellularly, re-locating receptors from one cellular region to another. The localization of axon guidance receptors to endosomal compartments is crucial for their function, signaling output and expression levels. For example, active receptors within endosomes can recruit downstream proteins to the endosomal membrane and facilitate signaling. Also, endosomal trafficking can re-locate receptors back to the plasma membrane to allow re-activation or mediate downregulation of receptor signaling via degradation. Accumulating evidence suggests that axon guidance receptors do not follow a pre-set default trafficking route but may change their localization within endosomes. This re-routing appears to be spatially and temporally regulated, either by expression of adaptor proteins or co-receptors. These findings shed light on how signaling in axon guidance is regulated and diversified - a mechanism which explains how a limited set of guidance cues can help to establish billions of neuronal connections. In this review, we summarize and discuss our current knowledge of axon guidance receptor trafficking and provide directions for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI