Machine learned Green's functions that approximately satisfy the wave equation

箱子 功能(生物学) 计算机科学 奇点 人工神经网络 点(几何) 格林函数 算法 数学分析 数学 应用数学 人工智能 几何学 进化生物学 生物
作者
Tariq Alkhalifah,Chao Song,Umair bin Waheed
标识
DOI:10.1190/segam2020-3421468.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Machine learned Green's functions that approximately satisfy the wave equationAuthors: Tariq AlkhalifahChao SongUmair bin WaheedTariq AlkhalifahKAUSTSearch for more papers by this author, Chao SongKAUSTSearch for more papers by this author, and Umair bin WaheedKFUPMSearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3421468.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractGreen’s functions are wavefield solutions for a particular point source. They form basis functions to build wavefields for modeling and inversion. However, calculating Green’s functions are both costly and memory intensive. We formulate frequency-domain machine-learned Green’s functions that are represented by neural networks (NN). This NN outputs a complex number (two values representing the real and imaginary part) for the scattered Green’s function at a location in space for a specific source location (both locations are input to the network). Considering a background homogeneous medium admitting an analytical Green’s function solution, the network is trained by fitting the output perturbed Green’s function and its derivatives to the wave equation expressed in terms of the perturbed Green’s function. The derivatives are calculated through the concept of automatic differentiation. In this case, the background Green’s function absorbs the point source singularity, which will allow us to train the network using random points over space and source location using a uniform distribution. Thus, feeding a reasonable number of random points from the model space will ultimately train a fully connected 8-layer deep neural network, to predict the scattered Green’s function. Initial tests on part of the simple layered model (extracted from the left side of the Marmousi model) with sources on the surface demonstrate the successful training of the NN for this application. Using the trained NN model for the Marmousi as an initial NN model for solving for the scattered Green’s function for a 2D slice from the Sigsbee model helped the NN converge faster to a reasonable solution.Presentation Date: Wednesday, October 14, 2020Session Start Time: 1:50 PMPresentation Time: 2:15 PMLocation: 360APresentation Type: OralKeywords: modeling, frequency-domain, neural networks, machine learningPermalink: https://doi.org/10.1190/segam2020-3421468.1FiguresReferencesRelatedDetailsCited byPINNup: Robust Neural Network Wavefield Solutions Using Frequency Upscaling and Neuron Splitting15 June 2022 | Journal of Geophysical Research: Solid Earth, Vol. 127, No. 6Wavefield Reconstruction Inversion via Physics-Informed Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 60High-dimensional wavefield solutions based on neural network functionsTariq Alkhalifah, Chao Song, and Xinquan Huang1 September 2021A modified physics-informed neural network with positional encodingXinquan Huang, Tariq Alkhalifah, and Chao Song1 September 2021Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks11 January 2021 | Geophysical Journal International, Vol. 225, No. 2 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Tariq Alkhalifah, Chao Song, and Umair bin Waheed, (2020), "Machine learned Green's functions that approximately satisfy the wave equation," SEG Technical Program Expanded Abstracts : 2638-2642. https://doi.org/10.1190/segam2020-3421468.1 Plain-Language Summary Keywordsmodelingfrequency-domainneural networksmachine learningPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
易海之旅完成签到,获得积分10
2秒前
yibo完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
5年科研3年毕业完成签到,获得积分10
3秒前
乐观山水完成签到,获得积分10
3秒前
echo发布了新的文献求助10
3秒前
吕佳完成签到 ,获得积分10
4秒前
Zkxxxx应助就学一点点采纳,获得10
4秒前
5秒前
5秒前
1111jfdasfkdanf完成签到 ,获得积分10
6秒前
6秒前
6秒前
唯美发布了新的文献求助10
6秒前
SSYZ发布了新的文献求助10
7秒前
ever完成签到,获得积分10
7秒前
苹果帆布鞋完成签到,获得积分10
8秒前
zy完成签到,获得积分10
8秒前
Neo完成签到,获得积分10
8秒前
十一发布了新的文献求助10
9秒前
kiki134发布了新的文献求助10
9秒前
青鹧完成签到,获得积分20
9秒前
ecwu发布了新的文献求助10
10秒前
10秒前
11秒前
shiyi发布了新的文献求助10
11秒前
DMSO发布了新的文献求助20
12秒前
果实发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
Lawgh完成签到,获得积分10
14秒前
15秒前
LQY完成签到,获得积分10
16秒前
16秒前
lalala发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149