清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learned Green's functions that approximately satisfy the wave equation

箱子 功能(生物学) 计算机科学 奇点 人工神经网络 点(几何) 格林函数 算法 数学分析 数学 应用数学 人工智能 几何学 进化生物学 生物
作者
Tariq Alkhalifah,Chao Song,Umair bin Waheed
标识
DOI:10.1190/segam2020-3421468.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Machine learned Green's functions that approximately satisfy the wave equationAuthors: Tariq AlkhalifahChao SongUmair bin WaheedTariq AlkhalifahKAUSTSearch for more papers by this author, Chao SongKAUSTSearch for more papers by this author, and Umair bin WaheedKFUPMSearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3421468.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractGreen’s functions are wavefield solutions for a particular point source. They form basis functions to build wavefields for modeling and inversion. However, calculating Green’s functions are both costly and memory intensive. We formulate frequency-domain machine-learned Green’s functions that are represented by neural networks (NN). This NN outputs a complex number (two values representing the real and imaginary part) for the scattered Green’s function at a location in space for a specific source location (both locations are input to the network). Considering a background homogeneous medium admitting an analytical Green’s function solution, the network is trained by fitting the output perturbed Green’s function and its derivatives to the wave equation expressed in terms of the perturbed Green’s function. The derivatives are calculated through the concept of automatic differentiation. In this case, the background Green’s function absorbs the point source singularity, which will allow us to train the network using random points over space and source location using a uniform distribution. Thus, feeding a reasonable number of random points from the model space will ultimately train a fully connected 8-layer deep neural network, to predict the scattered Green’s function. Initial tests on part of the simple layered model (extracted from the left side of the Marmousi model) with sources on the surface demonstrate the successful training of the NN for this application. Using the trained NN model for the Marmousi as an initial NN model for solving for the scattered Green’s function for a 2D slice from the Sigsbee model helped the NN converge faster to a reasonable solution.Presentation Date: Wednesday, October 14, 2020Session Start Time: 1:50 PMPresentation Time: 2:15 PMLocation: 360APresentation Type: OralKeywords: modeling, frequency-domain, neural networks, machine learningPermalink: https://doi.org/10.1190/segam2020-3421468.1FiguresReferencesRelatedDetailsCited byPINNup: Robust Neural Network Wavefield Solutions Using Frequency Upscaling and Neuron Splitting15 June 2022 | Journal of Geophysical Research: Solid Earth, Vol. 127, No. 6Wavefield Reconstruction Inversion via Physics-Informed Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 60High-dimensional wavefield solutions based on neural network functionsTariq Alkhalifah, Chao Song, and Xinquan Huang1 September 2021A modified physics-informed neural network with positional encodingXinquan Huang, Tariq Alkhalifah, and Chao Song1 September 2021Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks11 January 2021 | Geophysical Journal International, Vol. 225, No. 2 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Tariq Alkhalifah, Chao Song, and Umair bin Waheed, (2020), "Machine learned Green's functions that approximately satisfy the wave equation," SEG Technical Program Expanded Abstracts : 2638-2642. https://doi.org/10.1190/segam2020-3421468.1 Plain-Language Summary Keywordsmodelingfrequency-domainneural networksmachine learningPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枯叶蝶完成签到 ,获得积分10
3秒前
上官若男应助洋洋采纳,获得10
6秒前
Judy完成签到 ,获得积分0
7秒前
鱼儿游完成签到 ,获得积分10
8秒前
迷你的夜天完成签到 ,获得积分10
9秒前
感性的俊驰完成签到 ,获得积分10
14秒前
wr781586完成签到 ,获得积分10
14秒前
eyu完成签到,获得积分10
16秒前
airtermis完成签到 ,获得积分10
19秒前
eeeeeeenzyme完成签到 ,获得积分10
23秒前
25秒前
缥缈的闭月完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
xiaosui完成签到 ,获得积分10
27秒前
mumu发布了新的文献求助10
29秒前
洋洋完成签到,获得积分10
37秒前
166完成签到 ,获得积分10
41秒前
tianshanfeihe完成签到 ,获得积分10
46秒前
hcsdgf完成签到 ,获得积分10
52秒前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
烟花应助风中的棒棒糖采纳,获得10
1分钟前
光亮白羊完成签到 ,获得积分10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
yunt完成签到 ,获得积分10
1分钟前
slayers完成签到 ,获得积分10
1分钟前
小洪俊熙完成签到,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
1分钟前
PrayOne完成签到 ,获得积分10
1分钟前
1分钟前
风吹而过完成签到 ,获得积分10
1分钟前
YY完成签到 ,获得积分10
2分钟前
Hudson完成签到,获得积分10
2分钟前
蛋卷完成签到 ,获得积分10
2分钟前
青海盐湖所李阳阳完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029