Machine learned Green's functions that approximately satisfy the wave equation

箱子 功能(生物学) 计算机科学 奇点 人工神经网络 点(几何) 格林函数 算法 数学分析 数学 应用数学 人工智能 几何学 进化生物学 生物
作者
Tariq Alkhalifah,Chao Song,Umair bin Waheed
标识
DOI:10.1190/segam2020-3421468.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Machine learned Green's functions that approximately satisfy the wave equationAuthors: Tariq AlkhalifahChao SongUmair bin WaheedTariq AlkhalifahKAUSTSearch for more papers by this author, Chao SongKAUSTSearch for more papers by this author, and Umair bin WaheedKFUPMSearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3421468.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractGreen’s functions are wavefield solutions for a particular point source. They form basis functions to build wavefields for modeling and inversion. However, calculating Green’s functions are both costly and memory intensive. We formulate frequency-domain machine-learned Green’s functions that are represented by neural networks (NN). This NN outputs a complex number (two values representing the real and imaginary part) for the scattered Green’s function at a location in space for a specific source location (both locations are input to the network). Considering a background homogeneous medium admitting an analytical Green’s function solution, the network is trained by fitting the output perturbed Green’s function and its derivatives to the wave equation expressed in terms of the perturbed Green’s function. The derivatives are calculated through the concept of automatic differentiation. In this case, the background Green’s function absorbs the point source singularity, which will allow us to train the network using random points over space and source location using a uniform distribution. Thus, feeding a reasonable number of random points from the model space will ultimately train a fully connected 8-layer deep neural network, to predict the scattered Green’s function. Initial tests on part of the simple layered model (extracted from the left side of the Marmousi model) with sources on the surface demonstrate the successful training of the NN for this application. Using the trained NN model for the Marmousi as an initial NN model for solving for the scattered Green’s function for a 2D slice from the Sigsbee model helped the NN converge faster to a reasonable solution.Presentation Date: Wednesday, October 14, 2020Session Start Time: 1:50 PMPresentation Time: 2:15 PMLocation: 360APresentation Type: OralKeywords: modeling, frequency-domain, neural networks, machine learningPermalink: https://doi.org/10.1190/segam2020-3421468.1FiguresReferencesRelatedDetailsCited byPINNup: Robust Neural Network Wavefield Solutions Using Frequency Upscaling and Neuron Splitting15 June 2022 | Journal of Geophysical Research: Solid Earth, Vol. 127, No. 6Wavefield Reconstruction Inversion via Physics-Informed Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 60High-dimensional wavefield solutions based on neural network functionsTariq Alkhalifah, Chao Song, and Xinquan Huang1 September 2021A modified physics-informed neural network with positional encodingXinquan Huang, Tariq Alkhalifah, and Chao Song1 September 2021Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks11 January 2021 | Geophysical Journal International, Vol. 225, No. 2 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Tariq Alkhalifah, Chao Song, and Umair bin Waheed, (2020), "Machine learned Green's functions that approximately satisfy the wave equation," SEG Technical Program Expanded Abstracts : 2638-2642. https://doi.org/10.1190/segam2020-3421468.1 Plain-Language Summary Keywordsmodelingfrequency-domainneural networksmachine learningPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助coke采纳,获得20
刚刚
Julie关注了科研通微信公众号
刚刚
谷粱可愁完成签到,获得积分10
1秒前
Lg完成签到,获得积分10
1秒前
1秒前
温暖的子骞完成签到,获得积分10
1秒前
羞涩的丹云完成签到,获得积分10
1秒前
轻松元绿完成签到 ,获得积分0
2秒前
pipi发布了新的文献求助10
2秒前
2秒前
少不入川完成签到,获得积分10
2秒前
centlay完成签到,获得积分0
2秒前
Aimeee完成签到,获得积分10
3秒前
w7发布了新的文献求助10
3秒前
congconglyu发布了新的文献求助10
3秒前
小马甲应助ceeray23采纳,获得30
3秒前
3秒前
samuel完成签到,获得积分10
3秒前
4秒前
粒粒完成签到,获得积分10
4秒前
顺心夜南应助cwx采纳,获得20
4秒前
华仔应助kyle采纳,获得10
4秒前
4秒前
Donby完成签到,获得积分10
5秒前
uu完成签到 ,获得积分10
5秒前
highhigh完成签到,获得积分20
5秒前
多情自古空余恨完成签到,获得积分10
5秒前
俭朴的不可完成签到,获得积分10
7秒前
Aimeee发布了新的文献求助10
7秒前
南枝完成签到,获得积分10
7秒前
7秒前
7秒前
榴莲姑娘完成签到 ,获得积分10
8秒前
可爱的函函应助务实寒天采纳,获得10
8秒前
我就是歌手完成签到,获得积分10
8秒前
kk完成签到,获得积分10
9秒前
9秒前
琴香孙琴香完成签到,获得积分10
9秒前
欧飞发布了新的文献求助10
9秒前
However完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977