亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learned Green's functions that approximately satisfy the wave equation

箱子 功能(生物学) 计算机科学 奇点 人工神经网络 点(几何) 格林函数 算法 数学分析 数学 应用数学 人工智能 几何学 进化生物学 生物
作者
Tariq Alkhalifah,Chao Song,Umair bin Waheed
标识
DOI:10.1190/segam2020-3421468.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Machine learned Green's functions that approximately satisfy the wave equationAuthors: Tariq AlkhalifahChao SongUmair bin WaheedTariq AlkhalifahKAUSTSearch for more papers by this author, Chao SongKAUSTSearch for more papers by this author, and Umair bin WaheedKFUPMSearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3421468.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractGreen’s functions are wavefield solutions for a particular point source. They form basis functions to build wavefields for modeling and inversion. However, calculating Green’s functions are both costly and memory intensive. We formulate frequency-domain machine-learned Green’s functions that are represented by neural networks (NN). This NN outputs a complex number (two values representing the real and imaginary part) for the scattered Green’s function at a location in space for a specific source location (both locations are input to the network). Considering a background homogeneous medium admitting an analytical Green’s function solution, the network is trained by fitting the output perturbed Green’s function and its derivatives to the wave equation expressed in terms of the perturbed Green’s function. The derivatives are calculated through the concept of automatic differentiation. In this case, the background Green’s function absorbs the point source singularity, which will allow us to train the network using random points over space and source location using a uniform distribution. Thus, feeding a reasonable number of random points from the model space will ultimately train a fully connected 8-layer deep neural network, to predict the scattered Green’s function. Initial tests on part of the simple layered model (extracted from the left side of the Marmousi model) with sources on the surface demonstrate the successful training of the NN for this application. Using the trained NN model for the Marmousi as an initial NN model for solving for the scattered Green’s function for a 2D slice from the Sigsbee model helped the NN converge faster to a reasonable solution.Presentation Date: Wednesday, October 14, 2020Session Start Time: 1:50 PMPresentation Time: 2:15 PMLocation: 360APresentation Type: OralKeywords: modeling, frequency-domain, neural networks, machine learningPermalink: https://doi.org/10.1190/segam2020-3421468.1FiguresReferencesRelatedDetailsCited byPINNup: Robust Neural Network Wavefield Solutions Using Frequency Upscaling and Neuron Splitting15 June 2022 | Journal of Geophysical Research: Solid Earth, Vol. 127, No. 6Wavefield Reconstruction Inversion via Physics-Informed Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 60High-dimensional wavefield solutions based on neural network functionsTariq Alkhalifah, Chao Song, and Xinquan Huang1 September 2021A modified physics-informed neural network with positional encodingXinquan Huang, Tariq Alkhalifah, and Chao Song1 September 2021Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks11 January 2021 | Geophysical Journal International, Vol. 225, No. 2 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Tariq Alkhalifah, Chao Song, and Umair bin Waheed, (2020), "Machine learned Green's functions that approximately satisfy the wave equation," SEG Technical Program Expanded Abstracts : 2638-2642. https://doi.org/10.1190/segam2020-3421468.1 Plain-Language Summary Keywordsmodelingfrequency-domainneural networksmachine learningPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly发布了新的文献求助10
2秒前
17秒前
36秒前
zz发布了新的文献求助10
39秒前
青出于蓝蔡完成签到,获得积分10
58秒前
59秒前
chiazy完成签到 ,获得积分10
1分钟前
2分钟前
阳光刺眼完成签到 ,获得积分10
2分钟前
活力的妙之完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
自强不息完成签到 ,获得积分10
3分钟前
3分钟前
所所应助标致的元柏采纳,获得10
3分钟前
yi一一完成签到,获得积分10
3分钟前
wanci应助ly采纳,获得10
4分钟前
4分钟前
ly完成签到,获得积分10
4分钟前
4分钟前
李小猫发布了新的文献求助10
4分钟前
ly发布了新的文献求助10
4分钟前
贾南烟发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
缥缈嫣发布了新的文献求助10
5分钟前
6分钟前
缥缈嫣完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
SKD完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
鹏程万里完成签到,获得积分10
7分钟前
7分钟前
爱静静应助夏老师采纳,获得30
8分钟前
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311183
求助须知:如何正确求助?哪些是违规求助? 2943918
关于积分的说明 8516715
捐赠科研通 2619290
什么是DOI,文献DOI怎么找? 1432193
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810