已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learned Green's functions that approximately satisfy the wave equation

箱子 功能(生物学) 计算机科学 奇点 人工神经网络 点(几何) 格林函数 算法 数学分析 数学 应用数学 人工智能 几何学 进化生物学 生物
作者
Tariq Alkhalifah,Chao Song,Umair bin Waheed
标识
DOI:10.1190/segam2020-3421468.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Machine learned Green's functions that approximately satisfy the wave equationAuthors: Tariq AlkhalifahChao SongUmair bin WaheedTariq AlkhalifahKAUSTSearch for more papers by this author, Chao SongKAUSTSearch for more papers by this author, and Umair bin WaheedKFUPMSearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3421468.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractGreen’s functions are wavefield solutions for a particular point source. They form basis functions to build wavefields for modeling and inversion. However, calculating Green’s functions are both costly and memory intensive. We formulate frequency-domain machine-learned Green’s functions that are represented by neural networks (NN). This NN outputs a complex number (two values representing the real and imaginary part) for the scattered Green’s function at a location in space for a specific source location (both locations are input to the network). Considering a background homogeneous medium admitting an analytical Green’s function solution, the network is trained by fitting the output perturbed Green’s function and its derivatives to the wave equation expressed in terms of the perturbed Green’s function. The derivatives are calculated through the concept of automatic differentiation. In this case, the background Green’s function absorbs the point source singularity, which will allow us to train the network using random points over space and source location using a uniform distribution. Thus, feeding a reasonable number of random points from the model space will ultimately train a fully connected 8-layer deep neural network, to predict the scattered Green’s function. Initial tests on part of the simple layered model (extracted from the left side of the Marmousi model) with sources on the surface demonstrate the successful training of the NN for this application. Using the trained NN model for the Marmousi as an initial NN model for solving for the scattered Green’s function for a 2D slice from the Sigsbee model helped the NN converge faster to a reasonable solution.Presentation Date: Wednesday, October 14, 2020Session Start Time: 1:50 PMPresentation Time: 2:15 PMLocation: 360APresentation Type: OralKeywords: modeling, frequency-domain, neural networks, machine learningPermalink: https://doi.org/10.1190/segam2020-3421468.1FiguresReferencesRelatedDetailsCited byPINNup: Robust Neural Network Wavefield Solutions Using Frequency Upscaling and Neuron Splitting15 June 2022 | Journal of Geophysical Research: Solid Earth, Vol. 127, No. 6Wavefield Reconstruction Inversion via Physics-Informed Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 60High-dimensional wavefield solutions based on neural network functionsTariq Alkhalifah, Chao Song, and Xinquan Huang1 September 2021A modified physics-informed neural network with positional encodingXinquan Huang, Tariq Alkhalifah, and Chao Song1 September 2021Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks11 January 2021 | Geophysical Journal International, Vol. 225, No. 2 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Tariq Alkhalifah, Chao Song, and Umair bin Waheed, (2020), "Machine learned Green's functions that approximately satisfy the wave equation," SEG Technical Program Expanded Abstracts : 2638-2642. https://doi.org/10.1190/segam2020-3421468.1 Plain-Language Summary Keywordsmodelingfrequency-domainneural networksmachine learningPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
6秒前
7秒前
7秒前
微笑的忆枫完成签到 ,获得积分10
7秒前
胜似闲庭信步完成签到,获得积分10
8秒前
Evan完成签到 ,获得积分10
10秒前
11秒前
czh驳回了Hello应助
11秒前
grass发布了新的文献求助10
12秒前
包容的绿蕊完成签到,获得积分20
14秒前
15秒前
俏皮白云完成签到 ,获得积分10
16秒前
清茶旧友完成签到,获得积分10
18秒前
dd发布了新的文献求助10
18秒前
HighFeng_Lei发布了新的文献求助10
19秒前
19秒前
nitsuj发布了新的文献求助10
19秒前
我是老大应助木木采纳,获得10
21秒前
23秒前
乐乐应助yehata采纳,获得10
24秒前
隐形语海完成签到 ,获得积分10
25秒前
26秒前
科研通AI5应助自由梦槐采纳,获得10
27秒前
27秒前
小王同学完成签到,获得积分10
27秒前
30秒前
科研通AI5应助没有昵称采纳,获得10
31秒前
DamenS发布了新的文献求助10
33秒前
华仔应助猪猪hero采纳,获得10
34秒前
35秒前
迅速泽洋完成签到,获得积分10
36秒前
思源应助夏日的风采纳,获得10
37秒前
xiaoying发布了新的文献求助10
40秒前
科目三应助elizabeth339采纳,获得50
41秒前
43秒前
irie发布了新的文献求助10
43秒前
欧力蟹发布了新的文献求助30
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422