Adaptive pruning-based optimization of parameterized quantum circuits

修剪 电子线路 数学优化 理论计算机科学 数学
作者
Sukin Sim,Jonathan Romero,Jérôme F. Gonthier,Alexander A. Kunitsa
出处
期刊:arXiv: Quantum Physics 被引量:7
标识
DOI:10.1088/2058-9565/abe107
摘要

Variational hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices. While past studies have developed powerful and expressive ansatze, their near-term applications have been limited by the difficulty of optimizing in the vast parameter space. In this work, we propose a heuristic optimization strategy for such ansatze used in variational quantum algorithms, which we call Parameter-Efficient Circuit Training (PECT). Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms, in which each iteration of the algorithm activates and optimizes a subset of the total parameter set. To update the parameter subset between iterations, we adapt the dynamic sparse reparameterization scheme by Mostafa et al. (arXiv:1902.05967). We demonstrate PECT for the Variational Quantum Eigensolver, in which we benchmark unitary coupled-cluster ansatze including UCCSD and k-UpCCGSD, as well as the low-depth circuit ansatz (LDCA), to estimate ground state energies of molecular systems. We additionally use a layerwise variant of PECT to optimize a hardware-efficient circuit for the Sycamore processor to estimate the ground state energy densities of the one-dimensional Fermi-Hubbard model. From our numerical data, we find that PECT can enable optimizations of certain ansatze that were previously difficult to converge and more generally can improve the performance of variational algorithms by reducing the optimization runtime and/or the depth of circuits that encode the solution candidate(s).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄小米完成签到,获得积分20
1秒前
科研通AI6应助1816013153采纳,获得10
1秒前
雨_完成签到,获得积分10
1秒前
可可派完成签到,获得积分10
3秒前
0001完成签到,获得积分10
3秒前
汉堡包应助等待水绿采纳,获得10
3秒前
3秒前
4秒前
5秒前
徐立涛完成签到,获得积分10
5秒前
科研通AI2S应助TT采纳,获得10
5秒前
乐乐应助执着的导师采纳,获得10
5秒前
汉堡包应助小张同学采纳,获得10
5秒前
小牛发布了新的文献求助10
9秒前
那年那兔那些事完成签到 ,获得积分10
10秒前
科研通AI6应助pin采纳,获得30
11秒前
11秒前
阿橘完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
BowieHuang应助Rex采纳,获得10
12秒前
13秒前
赘婿应助小牛采纳,获得10
14秒前
DDD完成签到,获得积分10
14秒前
14秒前
虚心的如曼完成签到 ,获得积分10
14秒前
情怀应助黄小米采纳,获得30
15秒前
蚊子完成签到,获得积分10
15秒前
啊啊啊啊完成签到,获得积分10
16秒前
painting发布了新的文献求助10
16秒前
17秒前
17秒前
领导范儿应助葡萄小伊ovo采纳,获得10
17秒前
海盐气泡水完成签到,获得积分10
18秒前
晨晨完成签到,获得积分10
18秒前
21秒前
传奇3应助坚定的又莲采纳,获得10
21秒前
吧KO完成签到,获得积分10
21秒前
雪莉发布了新的文献求助10
22秒前
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427