Auto‐segmentation of organs at risk for head and neck radiotherapy planning: From atlas‐based to deep learning methods

分割 地图集(解剖学) 头颈部癌 深度学习 磁共振成像 放射治疗计划 放射治疗 模式 人工智能 头颈部 医学 医学影像学 医学物理学 计算机科学 核医学 放射科 解剖 外科 社会科学 社会学
作者
Tomaž Vrtovec,Domen Močnik,Primož Strojan,Franjo Pernuš,Bulat Ibragimov
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9) 被引量:79
标识
DOI:10.1002/mp.14320
摘要

Radiotherapy (RT) is one of the basic treatment modalities for cancer of the head and neck (H&N), which requires a precise spatial description of the target volumes and organs at risk (OARs) to deliver a highly conformal radiation dose to the tumor cells while sparing the healthy tissues. For this purpose, target volumes and OARs have to be delineated and segmented from medical images. As manual delineation is a tedious and time‐consuming task subjected to intra/interobserver variability, computerized auto‐segmentation has been developed as an alternative. The field of medical imaging and RT planning has experienced an increased interest in the past decade, with new emerging trends that shifted the field of H&N OAR auto‐segmentation from atlas‐based to deep learning‐based approaches. In this review, we systematically analyzed 78 relevant publications on auto‐segmentation of OARs in the H&N region from 2008 to date, and provided critical discussions and recommendations from various perspectives: image modality — both computed tomography and magnetic resonance image modalities are being exploited, but the potential of the latter should be explored more in the future; OAR — the spinal cord, brainstem, and major salivary glands are the most studied OARs, but additional experiments should be conducted for several less studied soft tissue structures; image database — several image databases with the corresponding ground truth are currently available for methodology evaluation, but should be augmented with data from multiple observers and multiple institutions; methodology — current methods have shifted from atlas‐based to deep learning auto‐segmentation, which is expected to become even more sophisticated; ground truth — delineation guidelines should be followed and participation of multiple experts from multiple institutions is recommended; performance metrics — the Dice coefficient as the standard volumetric overlap metrics should be accompanied with at least one distance metrics, and combined with clinical acceptability scores and risk assessments; segmentation performance — the best performing methods achieve clinically acceptable auto‐segmentation for several OARs, however, the dosimetric impact should be also studied to provide clinically relevant endpoints for RT planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蟑先生完成签到 ,获得积分10
3秒前
李燕伟完成签到 ,获得积分10
4秒前
方圆完成签到 ,获得积分10
5秒前
6秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
20秒前
专一的白开水完成签到 ,获得积分10
27秒前
游艺完成签到 ,获得积分10
28秒前
lysenko完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
研友_CCQ_M完成签到,获得积分10
33秒前
陈doctor完成签到 ,获得积分10
33秒前
ycc完成签到,获得积分10
35秒前
Alger完成签到,获得积分10
41秒前
袁璐完成签到 ,获得积分10
42秒前
44秒前
47秒前
量子星尘发布了新的文献求助10
47秒前
小井盖完成签到 ,获得积分10
47秒前
Bismarck发布了新的文献求助10
48秒前
温柔的柠檬完成签到 ,获得积分10
52秒前
范冰冰发布了新的文献求助10
54秒前
Moonchild完成签到 ,获得积分10
54秒前
Pursue完成签到 ,获得积分10
56秒前
慕青应助科研通管家采纳,获得10
58秒前
58秒前
Bismarck完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李爱国应助AliEmbark采纳,获得10
1分钟前
天真冷安完成签到,获得积分10
1分钟前
庚朝年完成签到 ,获得积分10
1分钟前
一见憘完成签到 ,获得积分10
1分钟前
啊熙完成签到 ,获得积分10
1分钟前
大模型应助Bismarck采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
周明明完成签到 ,获得积分10
1分钟前
直率的以寒完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215111
关于积分的说明 13111336
捐赠科研通 3997075
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740