Auto‐segmentation of organs at risk for head and neck radiotherapy planning: From atlas‐based to deep learning methods

分割 地图集(解剖学) 头颈部癌 深度学习 磁共振成像 放射治疗计划 放射治疗 模式 人工智能 头颈部 医学 医学影像学 医学物理学 计算机科学 核医学 放射科 解剖 外科 社会科学 社会学
作者
Tomaž Vrtovec,Domen Močnik,Primož Strojan,Franjo Pernuš,Bulat Ibragimov
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9) 被引量:79
标识
DOI:10.1002/mp.14320
摘要

Radiotherapy (RT) is one of the basic treatment modalities for cancer of the head and neck (H&N), which requires a precise spatial description of the target volumes and organs at risk (OARs) to deliver a highly conformal radiation dose to the tumor cells while sparing the healthy tissues. For this purpose, target volumes and OARs have to be delineated and segmented from medical images. As manual delineation is a tedious and time‐consuming task subjected to intra/interobserver variability, computerized auto‐segmentation has been developed as an alternative. The field of medical imaging and RT planning has experienced an increased interest in the past decade, with new emerging trends that shifted the field of H&N OAR auto‐segmentation from atlas‐based to deep learning‐based approaches. In this review, we systematically analyzed 78 relevant publications on auto‐segmentation of OARs in the H&N region from 2008 to date, and provided critical discussions and recommendations from various perspectives: image modality — both computed tomography and magnetic resonance image modalities are being exploited, but the potential of the latter should be explored more in the future; OAR — the spinal cord, brainstem, and major salivary glands are the most studied OARs, but additional experiments should be conducted for several less studied soft tissue structures; image database — several image databases with the corresponding ground truth are currently available for methodology evaluation, but should be augmented with data from multiple observers and multiple institutions; methodology — current methods have shifted from atlas‐based to deep learning auto‐segmentation, which is expected to become even more sophisticated; ground truth — delineation guidelines should be followed and participation of multiple experts from multiple institutions is recommended; performance metrics — the Dice coefficient as the standard volumetric overlap metrics should be accompanied with at least one distance metrics, and combined with clinical acceptability scores and risk assessments; segmentation performance — the best performing methods achieve clinically acceptable auto‐segmentation for several OARs, however, the dosimetric impact should be also studied to provide clinically relevant endpoints for RT planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到 ,获得积分10
刚刚
大大完成签到 ,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
YI发布了新的文献求助10
2秒前
Stardust完成签到 ,获得积分10
3秒前
zero发布了新的文献求助10
3秒前
共享精神应助果粒多采纳,获得10
4秒前
ali应助史念薇采纳,获得10
6秒前
8秒前
海城好人完成签到,获得积分10
8秒前
9秒前
默默完成签到,获得积分10
9秒前
维尼完成签到,获得积分20
9秒前
11秒前
文档发布了新的文献求助10
12秒前
12秒前
科目三应助Loik采纳,获得10
13秒前
14秒前
14秒前
16秒前
16秒前
果粒多发布了新的文献求助10
17秒前
19秒前
21秒前
李泽雄完成签到,获得积分10
22秒前
gsq发布了新的文献求助30
22秒前
momo发布了新的文献求助10
22秒前
wdy111应助学习鱼采纳,获得20
24秒前
24秒前
G哟X完成签到 ,获得积分10
25秒前
26秒前
科目三应助Zz采纳,获得10
27秒前
28秒前
zzzjh驳回了李健应助
28秒前
脑洞疼应助暴躁小龙采纳,获得10
30秒前
笑点低方盒完成签到,获得积分10
31秒前
归尘发布了新的文献求助10
31秒前
传奇3应助momo采纳,获得10
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158