清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Auto‐segmentation of organs at risk for head and neck radiotherapy planning: From atlas‐based to deep learning methods

分割 地图集(解剖学) 头颈部癌 深度学习 磁共振成像 放射治疗计划 放射治疗 模式 人工智能 头颈部 医学 医学影像学 医学物理学 计算机科学 核医学 放射科 解剖 外科 社会科学 社会学
作者
Tomaž Vrtovec,Domen Močnik,Primož Strojan,Franjo Pernuš,Bulat Ibragimov
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9) 被引量:79
标识
DOI:10.1002/mp.14320
摘要

Radiotherapy (RT) is one of the basic treatment modalities for cancer of the head and neck (H&N), which requires a precise spatial description of the target volumes and organs at risk (OARs) to deliver a highly conformal radiation dose to the tumor cells while sparing the healthy tissues. For this purpose, target volumes and OARs have to be delineated and segmented from medical images. As manual delineation is a tedious and time‐consuming task subjected to intra/interobserver variability, computerized auto‐segmentation has been developed as an alternative. The field of medical imaging and RT planning has experienced an increased interest in the past decade, with new emerging trends that shifted the field of H&N OAR auto‐segmentation from atlas‐based to deep learning‐based approaches. In this review, we systematically analyzed 78 relevant publications on auto‐segmentation of OARs in the H&N region from 2008 to date, and provided critical discussions and recommendations from various perspectives: image modality — both computed tomography and magnetic resonance image modalities are being exploited, but the potential of the latter should be explored more in the future; OAR — the spinal cord, brainstem, and major salivary glands are the most studied OARs, but additional experiments should be conducted for several less studied soft tissue structures; image database — several image databases with the corresponding ground truth are currently available for methodology evaluation, but should be augmented with data from multiple observers and multiple institutions; methodology — current methods have shifted from atlas‐based to deep learning auto‐segmentation, which is expected to become even more sophisticated; ground truth — delineation guidelines should be followed and participation of multiple experts from multiple institutions is recommended; performance metrics — the Dice coefficient as the standard volumetric overlap metrics should be accompanied with at least one distance metrics, and combined with clinical acceptability scores and risk assessments; segmentation performance — the best performing methods achieve clinically acceptable auto‐segmentation for several OARs, however, the dosimetric impact should be also studied to provide clinically relevant endpoints for RT planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
温如军完成签到 ,获得积分10
10秒前
14秒前
28秒前
31秒前
范ER完成签到 ,获得积分10
1分钟前
herpes完成签到 ,获得积分0
1分钟前
脑洞疼应助渣渣采纳,获得10
1分钟前
1分钟前
YifanWang完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
貔貅完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
John完成签到,获得积分10
3分钟前
3分钟前
西西娃儿发布了新的文献求助10
3分钟前
4分钟前
muriel完成签到,获得积分0
4分钟前
如歌完成签到,获得积分10
4分钟前
jeronimo完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Chonger发布了新的文献求助10
5分钟前
5分钟前
蝎子莱莱xth完成签到,获得积分10
5分钟前
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
silence完成签到,获得积分10
6分钟前
西西娃儿发布了新的文献求助10
6分钟前
温柔冰岚完成签到 ,获得积分10
6分钟前
西西娃儿发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293133
求助须知:如何正确求助?哪些是违规求助? 4443412
关于积分的说明 13831150
捐赠科研通 4326975
什么是DOI,文献DOI怎么找? 2375214
邀请新用户注册赠送积分活动 1370555
关于科研通互助平台的介绍 1335258