已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Auto‐segmentation of organs at risk for head and neck radiotherapy planning: From atlas‐based to deep learning methods

分割 地图集(解剖学) 头颈部癌 深度学习 磁共振成像 放射治疗计划 放射治疗 模式 人工智能 头颈部 医学 医学影像学 医学物理学 计算机科学 核医学 放射科 解剖 外科 社会学 社会科学
作者
Tomaž Vrtovec,Domen Močnik,Primož Strojan,Franjo Pernuš,Bulat Ibragimov
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9) 被引量:79
标识
DOI:10.1002/mp.14320
摘要

Radiotherapy (RT) is one of the basic treatment modalities for cancer of the head and neck (H&N), which requires a precise spatial description of the target volumes and organs at risk (OARs) to deliver a highly conformal radiation dose to the tumor cells while sparing the healthy tissues. For this purpose, target volumes and OARs have to be delineated and segmented from medical images. As manual delineation is a tedious and time‐consuming task subjected to intra/interobserver variability, computerized auto‐segmentation has been developed as an alternative. The field of medical imaging and RT planning has experienced an increased interest in the past decade, with new emerging trends that shifted the field of H&N OAR auto‐segmentation from atlas‐based to deep learning‐based approaches. In this review, we systematically analyzed 78 relevant publications on auto‐segmentation of OARs in the H&N region from 2008 to date, and provided critical discussions and recommendations from various perspectives: image modality — both computed tomography and magnetic resonance image modalities are being exploited, but the potential of the latter should be explored more in the future; OAR — the spinal cord, brainstem, and major salivary glands are the most studied OARs, but additional experiments should be conducted for several less studied soft tissue structures; image database — several image databases with the corresponding ground truth are currently available for methodology evaluation, but should be augmented with data from multiple observers and multiple institutions; methodology — current methods have shifted from atlas‐based to deep learning auto‐segmentation, which is expected to become even more sophisticated; ground truth — delineation guidelines should be followed and participation of multiple experts from multiple institutions is recommended; performance metrics — the Dice coefficient as the standard volumetric overlap metrics should be accompanied with at least one distance metrics, and combined with clinical acceptability scores and risk assessments; segmentation performance — the best performing methods achieve clinically acceptable auto‐segmentation for several OARs, however, the dosimetric impact should be also studied to provide clinically relevant endpoints for RT planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HuangLijie完成签到,获得积分20
1秒前
妮亚完成签到,获得积分10
1秒前
2秒前
2秒前
从容惊蛰发布了新的文献求助10
4秒前
4秒前
马博发布了新的文献求助10
4秒前
5秒前
LEIXE发布了新的文献求助10
5秒前
7秒前
忧郁依霜完成签到,获得积分20
7秒前
GrandeAmore发布了新的文献求助10
11秒前
科研通AI5应助ZZY采纳,获得10
14秒前
16秒前
优雅的冷卉完成签到 ,获得积分10
17秒前
juan发布了新的文献求助10
17秒前
科研通AI5应助从容惊蛰采纳,获得10
17秒前
陈杰完成签到,获得积分10
19秒前
子非鱼丶发布了新的文献求助30
20秒前
万能图书馆应助miles采纳,获得10
21秒前
小阿波发布了新的文献求助30
22秒前
小蘑菇应助cc采纳,获得10
25秒前
传奇3应助shania采纳,获得10
25秒前
26秒前
27秒前
所所应助小阿波采纳,获得10
30秒前
30秒前
31秒前
流星完成签到,获得积分10
32秒前
领导范儿应助心海采纳,获得10
33秒前
子非鱼丶完成签到,获得积分10
33秒前
36秒前
cc发布了新的文献求助10
36秒前
37秒前
请勿泊车发布了新的文献求助10
39秒前
39秒前
Christina发布了新的文献求助10
39秒前
Cheny完成签到,获得积分20
40秒前
komisan完成签到 ,获得积分10
41秒前
Jeffrey发布了新的文献求助10
42秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491183
求助须知:如何正确求助?哪些是违规求助? 3077829
关于积分的说明 9150542
捐赠科研通 2770283
什么是DOI,文献DOI怎么找? 1520261
邀请新用户注册赠送积分活动 704543
科研通“疑难数据库(出版商)”最低求助积分说明 702221