作者
Qing Tong,Li-yong Cui,Zongfu Hu,Xiaopeng Du,Hayat Muhammad Abid,Hongbin Wang
摘要
Symbiotic microbial communities are common in amphibians, and the composition of gut microbial communities varies with factors such as host phylogeny, life stage, ecology, and diet. However, little is known regarding how amphibians acquire their microbiota or how their growth, development, and environmental factors affect the diversity of their microbiotas. We sampled the gut microbiota during different developmental stages of brown frog Rana dybowskii, including tadpoles (T), frogs in metamorphosis (M), frogs just post-metamorphosis and after eating (F), juvenile frogs in summer (Js), adult frogs in summer (As), adult frogs in autumn (Aa), and hibernating frogs (Ah). We recorded data on the environmental (ambient temperature, fasting status, habitat, and season) and host (body mass and developmental period) factors. We investigated whether the gut microbiota diversity of R. dybowskii differs according to the host developmental stage via high-throughput Illumina sequencing and whether the gut microbiota diversity is affected by environmental and host factors. We found that alpha and beta diversity varied significantly during different developmental stages. The linear discriminant analysis effect size (LEfSe) analysis identified eight phyla exhibiting significant differences: Cyanobacteria (T group), Proteobacteria (M group), Fusobacteria (F group), Firmicutes (As group), Actinobacteria (Aa group), Verrucomicrobia (Aa group), Tenericutes (Aa group), and Bacteroidetes (Ah group). The Venn diagrams showed that 49 shared OTUs were present during all stages of development, whereas 10 OTUs were present in >90% of the samples. The environmental and host factors were significantly correlated with microbial community changes. Furthermore, the AIC-based model results suggested that development was the only variable that needed inclusion in the redundancy analysis (RDA) to explain the variance in taxa. These results have broad implications for our understanding of gut microbiota development and its associations with amphibian development and environmental factors.