Dynamic Pricing and Routing for Same-Day Delivery

收入 收益管理 灵活性(工程) 动态定价 马尔可夫决策过程 计算机科学 运筹学 布线(电子设计自动化) 经济 马尔可夫过程 微观经济学 财务 工程类 计算机网络 统计 数学 管理
作者
Marlin W. Ulmer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:54 (4): 1016-1033 被引量:106
标识
DOI:10.1287/trsc.2019.0958
摘要

An increasing number of e-commerce retailers offers same-day delivery. To deliver the ordered goods, providers dynamically dispatch a fleet of vehicles transporting the goods from the warehouse to the customers. In many cases, retailers offer different delivery deadline options, from four-hour delivery up to next-hour delivery. Due to the deadlines, vehicles often only deliver a few orders per trip. The overall number of served orders within the delivery horizon is small and the revenue low. As a result, many companies currently struggle to conduct same-day delivery cost-efficiently. In this paper, we show how dynamic pricing is able to substantially increase both revenue and the number of customers we are able to serve the same day. To this end, we present an anticipatory pricing and routing policy (APRP) method that incentivizes customers to select delivery deadline options efficiently for the fleet to fulfill. This maintains the fleet’s flexibility to serve more future orders. We model the respective pricing and routing problem as a Markov decision process (MDP). To apply APRP, the state-dependent opportunity costs per customer and option are required. To this end, we use a guided offline value function approximation (VFA) based on state space aggregation. The VFA approximates the opportunity cost for every state and delivery option with respect to the fleet’s flexibility. As an offline method, APRP is able to determine suitable prices instantly when a customer orders. In an extensive computational study, we compare APRP with a policy based on fixed prices and with conventional temporal and geographical pricing policies. APRP outperforms the benchmark policies significantly, leading to both a higher revenue and more customers served the same day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
端庄芯发布了新的文献求助10
2秒前
3秒前
不做科研发布了新的文献求助10
3秒前
幸运鹅47完成签到,获得积分10
4秒前
夜染发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
7秒前
bonjourqiao完成签到,获得积分10
9秒前
9秒前
10秒前
清凉茶完成签到,获得积分10
11秒前
小二郎应助花生什么树了采纳,获得10
12秒前
天天快乐应助iwonder采纳,获得10
12秒前
wanci应助郑方舟采纳,获得10
13秒前
珊明治完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
司纤户羽完成签到,获得积分10
17秒前
科目三应助77采纳,获得10
17秒前
sunny完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
zz完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
司纤户羽发布了新的文献求助60
22秒前
量子星尘发布了新的文献求助10
22秒前
慕青应助Heaven采纳,获得10
22秒前
23秒前
yufeng发布了新的文献求助10
24秒前
思源应助英勇的香之采纳,获得10
25秒前
李晓彤发布了新的文献求助10
25秒前
充电宝应助一步之遥采纳,获得10
25秒前
ying发布了新的文献求助10
26秒前
Smilingjht完成签到 ,获得积分10
26秒前
27秒前
心灵美的大山完成签到,获得积分10
27秒前
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304