Dynamic Pricing and Routing for Same-Day Delivery

收入 收益管理 灵活性(工程) 动态定价 马尔可夫决策过程 计算机科学 运筹学 布线(电子设计自动化) 经济 马尔可夫过程 微观经济学 财务 工程类 计算机网络 统计 数学 管理
作者
Marlin W. Ulmer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:54 (4): 1016-1033 被引量:74
标识
DOI:10.1287/trsc.2019.0958
摘要

An increasing number of e-commerce retailers offers same-day delivery. To deliver the ordered goods, providers dynamically dispatch a fleet of vehicles transporting the goods from the warehouse to the customers. In many cases, retailers offer different delivery deadline options, from four-hour delivery up to next-hour delivery. Due to the deadlines, vehicles often only deliver a few orders per trip. The overall number of served orders within the delivery horizon is small and the revenue low. As a result, many companies currently struggle to conduct same-day delivery cost-efficiently. In this paper, we show how dynamic pricing is able to substantially increase both revenue and the number of customers we are able to serve the same day. To this end, we present an anticipatory pricing and routing policy (APRP) method that incentivizes customers to select delivery deadline options efficiently for the fleet to fulfill. This maintains the fleet’s flexibility to serve more future orders. We model the respective pricing and routing problem as a Markov decision process (MDP). To apply APRP, the state-dependent opportunity costs per customer and option are required. To this end, we use a guided offline value function approximation (VFA) based on state space aggregation. The VFA approximates the opportunity cost for every state and delivery option with respect to the fleet’s flexibility. As an offline method, APRP is able to determine suitable prices instantly when a customer orders. In an extensive computational study, we compare APRP with a policy based on fixed prices and with conventional temporal and geographical pricing policies. APRP outperforms the benchmark policies significantly, leading to both a higher revenue and more customers served the same day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助卡卡采纳,获得10
刚刚
牛虫虫发布了新的文献求助30
1秒前
1秒前
柔弱飞雪完成签到,获得积分10
1秒前
一种信仰完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
YE完成签到,获得积分10
3秒前
2鱼完成签到,获得积分10
3秒前
FooLeup立仔完成签到,获得积分10
3秒前
4秒前
顾矜应助JUll采纳,获得10
4秒前
Amai发布了新的文献求助20
4秒前
小马甲应助Lucas采纳,获得10
4秒前
5秒前
zZ发布了新的文献求助10
5秒前
qi完成签到,获得积分10
6秒前
标致缘郡发布了新的文献求助10
6秒前
miawei完成签到,获得积分10
7秒前
7秒前
wangfu发布了新的文献求助10
7秒前
明理依云完成签到,获得积分10
7秒前
7秒前
8秒前
二世小卒完成签到 ,获得积分10
8秒前
和谐乌龟完成签到,获得积分10
9秒前
阳尧完成签到,获得积分10
9秒前
帅气惜霜发布了新的文献求助10
9秒前
9秒前
kkkklo发布了新的文献求助30
11秒前
传奇3应助润润轩轩采纳,获得10
11秒前
11秒前
13秒前
和谐乌龟发布了新的文献求助10
13秒前
zZ完成签到,获得积分10
13秒前
科研小白完成签到,获得积分10
13秒前
LYY发布了新的文献求助10
14秒前
wangfu完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794