Dynamic Pricing and Routing for Same-Day Delivery

收入 收益管理 灵活性(工程) 动态定价 马尔可夫决策过程 计算机科学 运筹学 布线(电子设计自动化) 经济 马尔可夫过程 微观经济学 财务 工程类 计算机网络 统计 数学 管理
作者
Marlin W. Ulmer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:54 (4): 1016-1033 被引量:106
标识
DOI:10.1287/trsc.2019.0958
摘要

An increasing number of e-commerce retailers offers same-day delivery. To deliver the ordered goods, providers dynamically dispatch a fleet of vehicles transporting the goods from the warehouse to the customers. In many cases, retailers offer different delivery deadline options, from four-hour delivery up to next-hour delivery. Due to the deadlines, vehicles often only deliver a few orders per trip. The overall number of served orders within the delivery horizon is small and the revenue low. As a result, many companies currently struggle to conduct same-day delivery cost-efficiently. In this paper, we show how dynamic pricing is able to substantially increase both revenue and the number of customers we are able to serve the same day. To this end, we present an anticipatory pricing and routing policy (APRP) method that incentivizes customers to select delivery deadline options efficiently for the fleet to fulfill. This maintains the fleet’s flexibility to serve more future orders. We model the respective pricing and routing problem as a Markov decision process (MDP). To apply APRP, the state-dependent opportunity costs per customer and option are required. To this end, we use a guided offline value function approximation (VFA) based on state space aggregation. The VFA approximates the opportunity cost for every state and delivery option with respect to the fleet’s flexibility. As an offline method, APRP is able to determine suitable prices instantly when a customer orders. In an extensive computational study, we compare APRP with a policy based on fixed prices and with conventional temporal and geographical pricing policies. APRP outperforms the benchmark policies significantly, leading to both a higher revenue and more customers served the same day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
香妃完成签到,获得积分10
刚刚
钟佳芸发布了新的文献求助10
刚刚
壮观听芹完成签到,获得积分10
刚刚
只只发布了新的文献求助10
1秒前
小熊完成签到 ,获得积分10
1秒前
1秒前
1秒前
wujin完成签到,获得积分10
1秒前
1秒前
宋真玉完成签到 ,获得积分10
2秒前
隐形曼青应助差一点采纳,获得10
2秒前
fuws完成签到 ,获得积分10
2秒前
2秒前
不想找文献完成签到,获得积分10
2秒前
zkl完成签到,获得积分10
2秒前
3秒前
归尘发布了新的文献求助10
3秒前
爆米花应助yyy采纳,获得10
3秒前
萨菲罗斯发布了新的文献求助10
3秒前
自然的枫叶完成签到,获得积分10
3秒前
完美世界应助阔达雨泽采纳,获得10
3秒前
笑点低的泥猴桃完成签到,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
Ambition9发布了新的文献求助10
4秒前
SciGPT应助SihanYin采纳,获得10
4秒前
DHY完成签到,获得积分20
4秒前
charles发布了新的文献求助10
4秒前
华仔应助林林采纳,获得10
5秒前
5秒前
爱听歌老1发布了新的文献求助10
5秒前
风清扬应助kk采纳,获得10
5秒前
5秒前
6秒前
Hello应助单纯剑鬼采纳,获得10
6秒前
故意的煎蛋完成签到,获得积分10
6秒前
哈哈发布了新的文献求助10
7秒前
现实的宛秋完成签到,获得积分20
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869