Meta-Learning of Neural Architectures for Few-Shot Learning

计算机科学 元学习(计算机科学) 人工智能 任务(项目管理) 机器学习 目标检测 分割 人工神经网络 适应(眼睛) 建筑 光学 物理 艺术 视觉艺术 经济 管理
作者
Thomas Elsken,Benedikt Staffler,Jan Hendrik Metzen,Frank Hutter
标识
DOI:10.1109/cvpr42600.2020.01238
摘要

The recent progress in neural architecture search (NAS) has allowed scaling the automated design of neural architectures to real-world domains, such as object detection and semantic segmentation. However, one prerequisite for the application of NAS are large amounts of labeled data and compute resources. This renders its application challenging in few-shot learning scenarios, where many related tasks need to be learned, each with limited amounts of data and compute time. Thus, few-shot learning is typically done with a fixed neural architecture. To improve upon this, we propose MetaNAS, the first method which fully integrates NAS with gradient-based meta-learning. MetaNAS optimizes a meta-architecture along with the meta-weights during meta-training. During meta-testing, architectures can be adapted to a novel task with a few steps of the task optimizer, that is: task adaptation becomes computationally cheap and requires only little data per task. Moreover, MetaNAS is agnostic in that it can be used with arbitrary model-agnostic meta-learning algorithms and arbitrary gradient-based NAS methods. Empirical results on standard few-shot classification benchmarks show that MetaNAS with a combination of DARTS and REPTILE yields state-of-the-art results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助你吼采纳,获得10
刚刚
Nathan发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助行大运采纳,获得10
3秒前
yx_cheng应助甘sir采纳,获得20
4秒前
赘婿应助hahaha采纳,获得10
5秒前
5秒前
5秒前
今后应助Steven采纳,获得10
7秒前
Liufgui应助kuiuLinvk采纳,获得50
7秒前
7秒前
8秒前
睡教教主发布了新的文献求助10
9秒前
YANer发布了新的文献求助10
10秒前
思源应助程风破浪采纳,获得10
11秒前
13秒前
14秒前
可爱的函函应助王富贵啊采纳,获得10
15秒前
15秒前
行大运发布了新的文献求助10
18秒前
18秒前
帅气的马里奥完成签到 ,获得积分10
19秒前
19秒前
小比熊完成签到,获得积分10
21秒前
racill发布了新的文献求助30
21秒前
XHW发布了新的文献求助10
22秒前
沉海完成签到,获得积分20
23秒前
oh应助你吼采纳,获得10
26秒前
凌鹏煊发布了新的文献求助10
27秒前
行大运完成签到,获得积分10
28秒前
Kiki发布了新的文献求助20
28秒前
Xincheng发布了新的文献求助10
29秒前
XHW完成签到,获得积分10
30秒前
31秒前
共享精神应助Steven采纳,获得10
31秒前
别摆烂了发布了新的文献求助10
33秒前
精明的书白完成签到,获得积分10
34秒前
34秒前
前行的灿完成签到 ,获得积分10
34秒前
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075