Viscosity Estimation of Multicomponent Slags of the CaO–SiO2–Al2O3–FexO System Based on Microstructure Analysis

粘度 碱性氧气炼钢 材料科学 热力学 冶金 硅酸盐 熔渣(焊接) 化学 矿物学 炼钢 复合材料 有机化学 物理
作者
Rui Zhang,Yi Min,Yu Wang,Xuan Zhao,Ji X. Jia,Cheng J. Liu
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:34 (7): 8129-8138 被引量:12
标识
DOI:10.1021/acs.energyfuels.0c00926
摘要

Slag viscosity is key factor of liquid steel refining and the smooth slag tapping of entrained flow coal gasifiers, and the accurate estimation of slag viscosity can provide a guidance for the selection of industrial raw material and the control of industrial process. In this study, a structure-related viscosity model about the multicomponent slags of the CaO–SiO2–Al2O3–FexO system is developed based on the flow mechanism of silicate melt to improve slag viscosity behavior. The present estimation model improved the expression of activation energy equation on the basis of the model proposed by Nakamoto and expanded the application from the ternary CaO–SiO2–Al2O3 system to the quaternary CaO–SiO2–Al2O3–FexO system. Then, the structural roles of all the components were clarified, and the types of oxygen bonds were defined by Raman spectroscopy. The fractions of various oxygen bonds were obtained, and the database of oxygen bonds in any composition within the range of experimental slags was generated by utilizing the Lagrange interpolation method. The result showed that the present model had an advantage in estimating slag viscosity within the compositional range of this experiment slag, and the mean deviations between the viscosities calculated by the present model and measured or published viscosities were within 20%. The model will offer a reference for the estimation and adjustment of slag behavior in the metallurgical slag or coal slag, especially for the iron-rich system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听导师发布了新的文献求助10
刚刚
刚刚
季忆完成签到,获得积分10
刚刚
小周发布了新的文献求助10
1秒前
smile发布了新的文献求助10
1秒前
2秒前
Lore完成签到 ,获得积分10
2秒前
2秒前
jiang完成签到,获得积分10
3秒前
3秒前
无奈的酒窝关注了科研通微信公众号
4秒前
毛毛完成签到,获得积分10
4秒前
正在完成签到,获得积分10
5秒前
5秒前
充电宝应助JR采纳,获得10
6秒前
6秒前
cc完成签到,获得积分20
6秒前
李爱国应助111采纳,获得10
6秒前
jy发布了新的文献求助10
6秒前
好好完成签到 ,获得积分10
7秒前
阿希塔完成签到,获得积分10
7秒前
JamesPei应助看看采纳,获得10
7秒前
9秒前
9秒前
卢健辉发布了新的文献求助10
9秒前
10秒前
cookie完成签到,获得积分10
10秒前
JMZ完成签到 ,获得积分10
12秒前
英姑应助星星采纳,获得10
12秒前
spurs17发布了新的文献求助30
13秒前
LH完成签到,获得积分10
13秒前
CodeCraft应助Island采纳,获得10
14秒前
annis完成签到,获得积分10
14秒前
小黄应助asir_xw采纳,获得10
15秒前
认真的rain完成签到,获得积分10
15秒前
糊涂的小伙完成签到,获得积分10
16秒前
芒果豆豆完成签到,获得积分10
16秒前
赎罪完成签到 ,获得积分10
17秒前
卢健辉完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808