Half human, half machine – augmenting service employees with AI for interpersonal emotion regulation

服务(商务) 人际交往 心理学 营销 社会心理学 业务
作者
Alexander P. Henkel,Stefano Bromuri,Deniz İren,Visara Urovi
出处
期刊:Journal of Service Management [Emerald Publishing Limited]
卷期号:31 (2): 247-265 被引量:70
标识
DOI:10.1108/josm-05-2019-0160
摘要

Purpose With the advent of increasingly sophisticated AI, the nature of work in the service frontline is changing. The next frontier is to go beyond replacing routine tasks and augmenting service employees with AI. The purpose of this paper is to investigate whether service employees augmented with AI-based emotion recognition software are more effective in interpersonal emotion regulation (IER) and whether and how IER impacts their own affective well-being. Design/methodology/approach For the underlying study, an AI-based emotion recognition software was developed in order to assist service employees in managing customer emotions. A field study based on 2,459 call center service interactions assessed the effectiveness of the AI in augmenting service employees for IER and the immediate downstream consequences for well-being relevant outcomes. Findings Augmenting service employees with AI significantly improved their IER activities. Employees in the AI (vs control) condition were significantly more effective in regulating customer emotions. IER goal attainment, in turn, mediated the effect on employee affective well-being. Perceived stress related to exposure to the AI augmentation acted as a competing mediator. Practical implications Service firms can benefit from state-of-the-art AI technology by focusing on its capacity to augment rather than merely replacing employees. Furthermore, signaling IER goal attainment with the help of technology may provide uplifting consequences for service employee affective well-being. Originality/value The present study is among the first to empirically test the introduction of an AI-fueled technology to augment service employees in handling customer emotions. This paper further complements the literature by investigating IER in a real-life setting and by uncovering goal attainment as a new mechanism underlying the effect of IER on the well-being of the sender.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jessie完成签到 ,获得积分10
1秒前
fx发布了新的文献求助10
1秒前
热心幻天发布了新的文献求助10
1秒前
4秒前
4秒前
6秒前
小王完成签到,获得积分10
6秒前
7秒前
9秒前
鲸鱼完成签到,获得积分10
9秒前
9秒前
9秒前
princess发布了新的文献求助10
10秒前
魂断红颜发布了新的文献求助10
10秒前
10秒前
hydrogen完成签到,获得积分10
11秒前
天天快乐应助彩虹猫采纳,获得10
12秒前
科目三应助西扬采纳,获得10
12秒前
Yankexin完成签到,获得积分20
13秒前
虚心的夏青完成签到,获得积分10
13秒前
zxm1997完成签到,获得积分20
13秒前
knn完成签到,获得积分10
13秒前
LMBE1K完成签到 ,获得积分10
13秒前
ini完成签到,获得积分10
13秒前
13秒前
ASDS完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
顾矜应助热心幻天采纳,获得10
14秒前
庄生发布了新的文献求助10
15秒前
无极微光应助铁风筝芳芳采纳,获得20
15秒前
梅岱衍径发布了新的文献求助10
15秒前
16秒前
16秒前
美丽的寻梅完成签到,获得积分10
16秒前
16秒前
zxm1997发布了新的文献求助10
16秒前
zhu发布了新的文献求助10
18秒前
pluto应助庄生采纳,获得10
20秒前
lxmccc发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613276
求助须知:如何正确求助?哪些是违规求助? 4698456
关于积分的说明 14897966
捐赠科研通 4735724
什么是DOI,文献DOI怎么找? 2546946
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473537