Homography‐based structural displacement measurement for large structures using unmanned aerial vehicles

单应性 人工智能 计算机视觉 计算机科学 流离失所(心理学) 职位(财务) 方向(向量空间) 由运动产生的结构 运动(物理) 数学 心理治疗师 几何学 投射试验 经济 统计 射影空间 心理学 财务
作者
Yufeng Weng,Jiazeng Shan,Zheng Feng Lu,Xilin Lü,Billie F. Spencer
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:36 (9): 1114-1128 被引量:70
标识
DOI:10.1111/mice.12645
摘要

Abstract Structural displacement is an important quantity to assess the health of civil infrastructure. Vision‐based approaches using unmanned aerial vehicles (UAV) mounted with high‐resolution cameras have been proposed for this purpose. However, because the camera itself is moving with the UAV, any video obtained will contain both the motion of the structure and the motion of the camera. Planar homography can be used to eliminate the errors induced by the camera movement without the need for camera parameters. However, its direct application to large structures still has limitations, because capturing the undeformed regions, along with the measurement points on the structure, within a single image with sufficient resolution is seldom feasible. In this study, a new framework is presented to address these issues and facilitate the extraction of the structural displacement from videos taken by a UAV‐mounted camera. First, a two‐layer feedforward neural network (FNN) is adopted to obtain the image coordinates of the selected features of the structure on its stationary position, which are further used as homography features. Next, the structural displacement is estimated with the homography transformation matrix determined from the obtained homography features. Finally, the proposed approach is validated on both a six‐story shear‐building model in the laboratory and an elevator tower located in Zhongshan City, China. These results demonstrate the efficacy of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭濹涵发布了新的文献求助10
刚刚
1秒前
阳光彩虹小白马关注了科研通微信公众号
1秒前
星辰大海应助QIQI采纳,获得10
1秒前
875259完成签到,获得积分10
2秒前
2秒前
ding应助恩恩天天开心采纳,获得10
2秒前
打打应助现代的糖豆采纳,获得10
2秒前
科目三应助第七个星球采纳,获得10
2秒前
Sue完成签到 ,获得积分10
2秒前
英姑应助HEANZ采纳,获得10
2秒前
梧桐完成签到,获得积分10
2秒前
盒子完成签到,获得积分10
2秒前
Yuki发布了新的文献求助10
3秒前
tangzanwayne发布了新的文献求助10
3秒前
睡觉大王完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
精明的飞槐完成签到,获得积分10
4秒前
YUE完成签到,获得积分10
4秒前
xyy发布了新的文献求助10
4秒前
5秒前
5秒前
小二郎应助qiaoyun采纳,获得10
5秒前
shouyi886发布了新的文献求助10
6秒前
6秒前
安生发布了新的文献求助10
6秒前
875259发布了新的文献求助10
6秒前
香蕉觅云应助Sue采纳,获得10
6秒前
小马甲应助LG采纳,获得30
7秒前
7秒前
科研通AI2S应助Tooth7采纳,获得10
7秒前
朱小燕发布了新的文献求助10
7秒前
南吕十八发布了新的文献求助30
7秒前
liuchair发布了新的文献求助30
8秒前
gggggggdde完成签到,获得积分10
8秒前
yy发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894