Homography‐based structural displacement measurement for large structures using unmanned aerial vehicles

单应性 人工智能 计算机视觉 计算机科学 流离失所(心理学) 职位(财务) 方向(向量空间) 由运动产生的结构 运动(物理) 数学 心理治疗师 几何学 投射试验 经济 统计 射影空间 心理学 财务
作者
Yufeng Weng,Jiazeng Shan,Zheng Feng Lu,Xilin Lü,Billie F. Spencer
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:36 (9): 1114-1128 被引量:70
标识
DOI:10.1111/mice.12645
摘要

Abstract Structural displacement is an important quantity to assess the health of civil infrastructure. Vision‐based approaches using unmanned aerial vehicles (UAV) mounted with high‐resolution cameras have been proposed for this purpose. However, because the camera itself is moving with the UAV, any video obtained will contain both the motion of the structure and the motion of the camera. Planar homography can be used to eliminate the errors induced by the camera movement without the need for camera parameters. However, its direct application to large structures still has limitations, because capturing the undeformed regions, along with the measurement points on the structure, within a single image with sufficient resolution is seldom feasible. In this study, a new framework is presented to address these issues and facilitate the extraction of the structural displacement from videos taken by a UAV‐mounted camera. First, a two‐layer feedforward neural network (FNN) is adopted to obtain the image coordinates of the selected features of the structure on its stationary position, which are further used as homography features. Next, the structural displacement is estimated with the homography transformation matrix determined from the obtained homography features. Finally, the proposed approach is validated on both a six‐story shear‐building model in the laboratory and an elevator tower located in Zhongshan City, China. These results demonstrate the efficacy of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助jk采纳,获得10
2秒前
3秒前
4秒前
5秒前
6秒前
7秒前
科研通AI2S应助秋秋采纳,获得10
8秒前
9秒前
9秒前
川儿完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助端庄的正豪采纳,获得10
9秒前
BGBXMY完成签到,获得积分10
10秒前
川儿发布了新的文献求助10
13秒前
拧宁发布了新的文献求助10
13秒前
玉蝉完成签到,获得积分10
14秒前
刘浩然发布了新的文献求助30
17秒前
万能图书馆应助老毕登采纳,获得10
17秒前
希望天下0贩的0应助oui采纳,获得10
17秒前
17秒前
不配.应助玉蝉采纳,获得10
17秒前
soapffz完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
well发布了新的文献求助10
21秒前
zzy发布了新的文献求助10
22秒前
回鱼发布了新的文献求助50
23秒前
23秒前
熠旅发布了新的文献求助10
24秒前
25秒前
一休发布了新的文献求助10
26秒前
pursue发布了新的文献求助10
26秒前
wrufhg发布了新的文献求助10
26秒前
26秒前
luo发布了新的文献求助20
27秒前
rossliyi完成签到,获得积分20
28秒前
28秒前
xiao完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145363
求助须知:如何正确求助?哪些是违规求助? 2796792
关于积分的说明 7821445
捐赠科研通 2453077
什么是DOI,文献DOI怎么找? 1305438
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464