Collaborative Training Between Region Proposal Localization and Classification for Domain Adaptive Object Detection

计算机科学 域适应 分类器(UML) 探测器 人工智能 目标检测 模式识别(心理学) 数据挖掘 标记数据 杠杆(统计) 机器学习 电信
作者
Ganlong Zhao,Guanbin Li,Ruijia Xu,Liang Lin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 86-102 被引量:88
标识
DOI:10.1007/978-3-030-58523-5_6
摘要

Object detectors are usually trained with large amount of labeled data, which is expensive and labor-intensive. Pre-trained detectors applied to unlabeled dataset always suffer from the difference of dataset distribution, also called domain shift. Domain adaptation for object detection tries to adapt the detector from labeled datasets to unlabeled ones for better performance. In this paper, we are the first to reveal that the region proposal network (RPN) and region proposal classifier (RPC) in the endemic two-stage detectors (e.g., Faster RCNN) demonstrate significantly different transferability when facing large domain gap. The region classifier shows preferable performance but is limited without RPN’s high-quality proposals while simple alignment in the backbone network is not effective enough for RPN adaptation. We delve into the consistency and the difference of RPN and RPC, treat them individually and leverage high-confidence output of one as mutual guidance to train the other. Moreover, the samples with low-confidence are used for discrepancy calculation between RPN and RPC and minimax optimization. Extensive experimental results on various scenarios have demonstrated the effectiveness of our proposed method in both domain-adaptive region proposal generation and object detection. Code is available at https://github.com/GanlongZhao/CST_DA_detection .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助陈昇采纳,获得10
1秒前
skr完成签到,获得积分10
1秒前
丘比特应助专注背包采纳,获得10
1秒前
丘比特应助默默千亦采纳,获得10
2秒前
木木完成签到,获得积分10
2秒前
scm应助汪惜寒采纳,获得80
3秒前
hahaha完成签到,获得积分10
6秒前
8秒前
难过梦竹发布了新的文献求助60
8秒前
liu完成签到,获得积分10
9秒前
小马甲应助舒心的雪卉采纳,获得10
10秒前
11秒前
英俊的铭应助唧唧采纳,获得10
11秒前
张丹111完成签到,获得积分10
11秒前
figure完成签到 ,获得积分10
12秒前
12秒前
yx20148关注了科研通微信公众号
12秒前
小郭大夫完成签到,获得积分10
15秒前
一种信仰完成签到,获得积分10
16秒前
Hm完成签到,获得积分10
17秒前
18秒前
勤劳的小蜜蜂完成签到 ,获得积分10
18秒前
fanlin完成签到,获得积分0
18秒前
19秒前
22秒前
22秒前
KD发布了新的文献求助10
24秒前
医隐完成签到,获得积分10
24秒前
yudandan@CJLU发布了新的文献求助10
26秒前
27秒前
高求完成签到,获得积分10
27秒前
27秒前
yx20148发布了新的文献求助10
28秒前
一口橙汁完成签到,获得积分10
28秒前
傲娇皮皮虾完成签到 ,获得积分10
30秒前
充电宝应助PZD采纳,获得10
31秒前
萧暖发布了新的文献求助10
32秒前
33秒前
医隐发布了新的文献求助20
33秒前
应飞飞完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952993
求助须知:如何正确求助?哪些是违规求助? 3498423
关于积分的说明 11091766
捐赠科研通 3229049
什么是DOI,文献DOI怎么找? 1785199
邀请新用户注册赠送积分活动 869228
科研通“疑难数据库(出版商)”最低求助积分说明 801411