Aerial filming with synchronized drones using reinforcement learning

无人机 计算机科学 强化学习 冗余(工程) 人工智能 基线(sea) 实时计算 操作系统 遗传学 生物 海洋学 地质学
作者
Kenneth C. W Goh,Raymond B. C Ng,Y.Y. Jennie Wong,Nicholas Ho,Matthew Chin Heng Chua
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:80 (12): 18125-18150 被引量:8
标识
DOI:10.1007/s11042-020-10388-5
摘要

Usage of multiple drones is necessary for aerial filming applications to ensure redundancy. However, this could inevitably contribute to higher risks of collisions, especially when the number of drones increases. Hence, this motivates us to explore various autonomous flight formation control methods that have the potential to enable multiple drones to effectively track a specific target at the same time. In this paper, we designed a model-free deep reinforcement learning algorithm, which is mainly based on the Deep Recurrent Q-Network concept, for the aforementioned purposes. The proposed algorithm was expanded into single and multi-agent types that enable multiple drones tracking while maintaining formation and preventing collision. The involved rewards in these approaches are two-dimensional in nature and are dependent on the communication system. Using Microsoft AirSim simulator, a virtual environment that includes four virtual drones was developed for experimental purposes. A comparison was made among various methods during the simulations, and the results concluded that the recurrent, single-agent model is the most effective method, being 33% more effective than its recurrent, multi-agent counterparts. The poor performance of the non-recurrent, single-agent baseline model also suggests that the recurrent elements in the network are essential to enable desirable multiple-drones flight.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
今后应助木子采纳,获得10
3秒前
3秒前
5秒前
123发布了新的文献求助10
6秒前
兜有米完成签到 ,获得积分10
6秒前
星辰大海应助HiK采纳,获得30
7秒前
8秒前
开开发布了新的文献求助10
9秒前
SYLH应助lin采纳,获得10
10秒前
12秒前
香菜张发布了新的文献求助10
12秒前
Dtan应助肖肖采纳,获得10
12秒前
duanhuiyuan应助靓丽的飞槐采纳,获得10
12秒前
12秒前
vince完成签到,获得积分10
13秒前
13秒前
深入肺腑完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
17秒前
兜兜发布了新的文献求助10
17秒前
个性的振家完成签到,获得积分10
18秒前
19秒前
19秒前
Arginine发布了新的文献求助30
20秒前
vince发布了新的文献求助10
21秒前
21秒前
小郭不洗锅完成签到,获得积分20
21秒前
23秒前
23秒前
111完成签到,获得积分10
24秒前
lwh发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
故意的青枫完成签到,获得积分10
26秒前
小事一庄发布了新的文献求助10
27秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434140
求助须知:如何正确求助?哪些是违规求助? 3031366
关于积分的说明 8941708
捐赠科研通 2719312
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689455
邀请新用户注册赠送积分活动 685580