Aerial filming with synchronized drones using reinforcement learning

无人机 计算机科学 强化学习 冗余(工程) 人工智能 基线(sea) 实时计算 操作系统 遗传学 生物 海洋学 地质学
作者
Kenneth C. W Goh,Raymond B. C Ng,Y.Y. Jennie Wong,Nicholas Ho,Matthew Chin Heng Chua
出处
期刊:Multimedia Tools and Applications [Springer Science+Business Media]
卷期号:80 (12): 18125-18150 被引量:8
标识
DOI:10.1007/s11042-020-10388-5
摘要

Usage of multiple drones is necessary for aerial filming applications to ensure redundancy. However, this could inevitably contribute to higher risks of collisions, especially when the number of drones increases. Hence, this motivates us to explore various autonomous flight formation control methods that have the potential to enable multiple drones to effectively track a specific target at the same time. In this paper, we designed a model-free deep reinforcement learning algorithm, which is mainly based on the Deep Recurrent Q-Network concept, for the aforementioned purposes. The proposed algorithm was expanded into single and multi-agent types that enable multiple drones tracking while maintaining formation and preventing collision. The involved rewards in these approaches are two-dimensional in nature and are dependent on the communication system. Using Microsoft AirSim simulator, a virtual environment that includes four virtual drones was developed for experimental purposes. A comparison was made among various methods during the simulations, and the results concluded that the recurrent, single-agent model is the most effective method, being 33% more effective than its recurrent, multi-agent counterparts. The poor performance of the non-recurrent, single-agent baseline model also suggests that the recurrent elements in the network are essential to enable desirable multiple-drones flight.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助暴躁小龙采纳,获得10
2秒前
6秒前
7秒前
蓬松小面包完成签到 ,获得积分20
8秒前
bkagyin应助大白采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
收集快乐发布了新的文献求助10
10秒前
bsf123完成签到,获得积分10
10秒前
11秒前
DeepLearning发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助细辛采纳,获得10
13秒前
14秒前
14秒前
俭朴依白完成签到,获得积分10
14秒前
ElbingX完成签到,获得积分10
16秒前
暴躁小龙发布了新的文献求助10
17秒前
文档发布了新的文献求助10
18秒前
18秒前
严溯发布了新的文献求助10
19秒前
19秒前
21秒前
momo发布了新的文献求助10
21秒前
不可思宇完成签到,获得积分10
22秒前
22秒前
浩浩发布了新的文献求助10
23秒前
Philip发布了新的文献求助10
24秒前
25秒前
赘婿应助SherlockHe采纳,获得10
25秒前
橘子的角动量完成签到,获得积分10
26秒前
严溯完成签到,获得积分10
27秒前
28秒前
胡航航发布了新的文献求助20
28秒前
雨的痕迹发布了新的文献求助10
29秒前
AnnieSsy完成签到,获得积分10
29秒前
程程发布了新的文献求助10
30秒前
浩浩完成签到,获得积分10
31秒前
朴素的小霸王完成签到 ,获得积分10
33秒前
RESLR发布了新的文献求助20
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158