已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aerial filming with synchronized drones using reinforcement learning

无人机 计算机科学 强化学习 冗余(工程) 人工智能 基线(sea) 实时计算 操作系统 海洋学 遗传学 生物 地质学
作者
Kenneth C. W Goh,Raymond B. C Ng,Y.Y. Jennie Wong,Nicholas Ho,Matthew Chin Heng Chua
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:80 (12): 18125-18150 被引量:8
标识
DOI:10.1007/s11042-020-10388-5
摘要

Usage of multiple drones is necessary for aerial filming applications to ensure redundancy. However, this could inevitably contribute to higher risks of collisions, especially when the number of drones increases. Hence, this motivates us to explore various autonomous flight formation control methods that have the potential to enable multiple drones to effectively track a specific target at the same time. In this paper, we designed a model-free deep reinforcement learning algorithm, which is mainly based on the Deep Recurrent Q-Network concept, for the aforementioned purposes. The proposed algorithm was expanded into single and multi-agent types that enable multiple drones tracking while maintaining formation and preventing collision. The involved rewards in these approaches are two-dimensional in nature and are dependent on the communication system. Using Microsoft AirSim simulator, a virtual environment that includes four virtual drones was developed for experimental purposes. A comparison was made among various methods during the simulations, and the results concluded that the recurrent, single-agent model is the most effective method, being 33% more effective than its recurrent, multi-agent counterparts. The poor performance of the non-recurrent, single-agent baseline model also suggests that the recurrent elements in the network are essential to enable desirable multiple-drones flight.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panyang发布了新的文献求助10
1秒前
鱼鱼鱼发布了新的文献求助10
2秒前
ZHANGZ完成签到,获得积分10
3秒前
Janny发布了新的文献求助10
4秒前
6秒前
8秒前
8秒前
李健完成签到 ,获得积分10
11秒前
11秒前
12秒前
luyuhao3完成签到,获得积分10
12秒前
13秒前
周不游发布了新的文献求助10
14秒前
14秒前
珷玞发布了新的文献求助10
15秒前
16秒前
16秒前
彭于晏应助panyang采纳,获得10
16秒前
852应助嗯嗯采纳,获得10
17秒前
17秒前
20秒前
多情的垣完成签到,获得积分10
20秒前
yuyuyu发布了新的文献求助10
21秒前
英俊的铭应助从嘉采纳,获得10
22秒前
22秒前
23秒前
初夏发布了新的文献求助10
23秒前
24秒前
24秒前
无尽夏完成签到 ,获得积分10
26秒前
26秒前
27秒前
小蘑菇应助mgl采纳,获得10
27秒前
27秒前
zyw发布了新的文献求助10
28秒前
打打应助zzzdx采纳,获得10
29秒前
哈哈哈发布了新的文献求助10
29秒前
kitty发布了新的文献求助10
31秒前
xiaofeiyan完成签到 ,获得积分10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810