A novel genetic LSTM model for wind power forecast

风力发电 风电预测 计算机科学 功率(物理) 遗传算法 期限(时间) 支持向量机 电力系统 人工智能 机器学习 工程类 量子力学 电气工程 物理
作者
Farah Shahid,Aneela Zameer,Muhammad Muneeb
出处
期刊:Energy [Elsevier BV]
卷期号:223: 120069-120069 被引量:343
标识
DOI:10.1016/j.energy.2021.120069
摘要

Variations of produced power in windmills may influence the appropriate integration in power-driven grids which may disrupt the balance between electricity demand and its production. Consequently, accurate prediction is extremely preferred for planning reliable and effective execution of power systems and to guarantee the continuous supply. For this purpose, a novel genetic long short term memory (GLSTM) framework comprising of long short term memory and genetic algorithm (GA) is proposed to predict short-term wind power. In the proposed GLSTM model, the strength of LSTM is employed due to its capability of automatically learning features from sequential data, while the global optimization strategy of GA is exploited to optimize window size and number of neurons in LSTM layers. Prediction from GLSTM has been compared with actual power, predictions of support vector regressor, and with reported techniques in terms of standard performance indices. It can be evaluated from the comparison that GLSTM and its variants provide accurate, reliable, and robust predictions of wind power of seven wind farms in Europe. In terms of percentage improvement, GLSTM, on average, improves wind power predictions from 6% to 30% as opposed to existing techniques. Wilcoxon signed-rank test demonstrates that GLSTM is significantly different from standard LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西城锡城发布了新的文献求助10
2秒前
科研通AI5应助nako采纳,获得10
2秒前
小四完成签到,获得积分10
2秒前
汉堡包应助Asd采纳,获得10
7秒前
科目三应助小兔叽采纳,获得10
12秒前
顾矜应助sincerity采纳,获得10
17秒前
顾矜应助yly采纳,获得10
17秒前
FashionBoy应助李李李采纳,获得10
18秒前
ESJIAN发布了新的文献求助30
24秒前
qaq完成签到,获得积分10
25秒前
27秒前
费雪卉发布了新的文献求助10
28秒前
李健应助无情的宛儿采纳,获得10
28秒前
pluto应助yyy_采纳,获得10
30秒前
31秒前
DDDD完成签到,获得积分10
32秒前
32秒前
小兔叽发布了新的文献求助10
32秒前
热情的曼安完成签到,获得积分10
33秒前
33秒前
李李李发布了新的文献求助10
35秒前
36秒前
Jasper应助Yolanda3088采纳,获得10
36秒前
wenlin发布了新的文献求助10
37秒前
moon完成签到 ,获得积分10
38秒前
sincerity发布了新的文献求助10
41秒前
小兔叽完成签到,获得积分10
43秒前
shaco发布了新的文献求助10
43秒前
44秒前
wenlin完成签到,获得积分10
44秒前
44秒前
微信研友发布了新的文献求助10
46秒前
哈哈哈完成签到 ,获得积分10
48秒前
彩色菲鹰完成签到,获得积分10
50秒前
情怀应助xcydd采纳,获得30
50秒前
52秒前
充电宝应助111采纳,获得10
52秒前
彩色菲鹰发布了新的文献求助10
53秒前
53秒前
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670942
求助须知:如何正确求助?哪些是违规求助? 3227849
关于积分的说明 9777334
捐赠科研通 2938001
什么是DOI,文献DOI怎么找? 1609736
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959