亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

医学 病态的 列线图 乳腺癌 队列 接收机工作特性 置信区间 肿瘤科 新辅助治疗 放射科 内科学 癌症
作者
Meng Jiang,Changli Li,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Xu Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:147: 95-105 被引量:185
标识
DOI:10.1016/j.ejca.2021.01.028
摘要

Abstract

Purpose

The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound.

Methods

Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness.

Results

The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor–positive/human epidermal growth factor receptor 2 (HER2)–negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful.

Conclusion

A deep learning–based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定成风完成签到,获得积分0
1秒前
Maryamgvl完成签到 ,获得积分10
2秒前
结实智宸完成签到,获得积分10
8秒前
ylh完成签到,获得积分10
19秒前
20秒前
suresure发布了新的文献求助10
24秒前
25秒前
26秒前
28秒前
Ava应助suresure采纳,获得10
29秒前
善学以致用应助suresure采纳,获得10
29秒前
香豆素完成签到 ,获得积分10
31秒前
成就夜柳发布了新的文献求助10
32秒前
可爱的函函应助成就夜柳采纳,获得10
38秒前
JamesPei应助chuchu采纳,获得10
41秒前
zl13332完成签到 ,获得积分10
45秒前
潇潇发布了新的文献求助10
47秒前
50秒前
misstwo完成签到,获得积分10
51秒前
53秒前
个性紫雪关注了科研通微信公众号
58秒前
11发布了新的文献求助30
59秒前
1分钟前
1分钟前
suresure发布了新的文献求助10
1分钟前
潇潇完成签到,获得积分10
1分钟前
1分钟前
1分钟前
suresure发布了新的文献求助10
1分钟前
1分钟前
hsc完成签到,获得积分10
1分钟前
PAIDAXXXX完成签到,获得积分10
1分钟前
魔丸学医完成签到 ,获得积分10
1分钟前
Cell完成签到 ,获得积分10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得30
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291256
求助须知:如何正确求助?哪些是违规求助? 4442357
关于积分的说明 13829738
捐赠科研通 4325330
什么是DOI,文献DOI怎么找? 2374146
邀请新用户注册赠送积分活动 1369487
关于科研通互助平台的介绍 1333670