Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

医学 病态的 列线图 乳腺癌 队列 接收机工作特性 置信区间 肿瘤科 新辅助治疗 放射科 内科学 癌症
作者
Meng Jiang,Changli Li,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Xu Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:147: 95-105 被引量:202
标识
DOI:10.1016/j.ejca.2021.01.028
摘要

Abstract

Purpose

The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound.

Methods

Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness.

Results

The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor–positive/human epidermal growth factor receptor 2 (HER2)–negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful.

Conclusion

A deep learning–based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
絮絮徐完成签到 ,获得积分10
1秒前
mucheng发布了新的文献求助10
4秒前
苦咖啡行僧完成签到 ,获得积分10
5秒前
方方完成签到 ,获得积分10
6秒前
mugglea完成签到 ,获得积分10
7秒前
在水一方完成签到,获得积分0
7秒前
曲夜白完成签到 ,获得积分10
9秒前
weiwei完成签到 ,获得积分10
11秒前
科研通AI6应助听话的鸟采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
许水桃完成签到,获得积分10
16秒前
勤qin完成签到 ,获得积分10
19秒前
危机的道天完成签到 ,获得积分10
21秒前
九天完成签到 ,获得积分0
21秒前
Criminology34应助mucheng采纳,获得10
21秒前
天下无马完成签到 ,获得积分10
23秒前
24秒前
daidaidene完成签到 ,获得积分10
25秒前
ken131完成签到 ,获得积分0
29秒前
shi0331完成签到,获得积分10
30秒前
WWW完成签到 ,获得积分10
30秒前
唐擎汉发布了新的文献求助10
31秒前
小仙女完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
35秒前
听话的鸟完成签到,获得积分10
38秒前
无知者海生完成签到 ,获得积分10
39秒前
39秒前
CWC完成签到,获得积分10
40秒前
Allen完成签到,获得积分10
43秒前
yuchangkun完成签到,获得积分20
43秒前
c445507405完成签到 ,获得积分10
44秒前
Orange应助唐擎汉采纳,获得10
44秒前
391X小king发布了新的文献求助10
45秒前
Zz完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
51秒前
zw完成签到,获得积分10
57秒前
9527完成签到,获得积分10
57秒前
vitamin完成签到 ,获得积分10
58秒前
dahong完成签到 ,获得积分10
59秒前
jjy完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645069
求助须知:如何正确求助?哪些是违规求助? 4767671
关于积分的说明 15026272
捐赠科研通 4803492
什么是DOI,文献DOI怎么找? 2568332
邀请新用户注册赠送积分活动 1525697
关于科研通互助平台的介绍 1485301