Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

医学 病态的 列线图 乳腺癌 队列 接收机工作特性 置信区间 肿瘤科 新辅助治疗 放射科 内科学 癌症
作者
Meng Jiang,Changli Li,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Xu Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:147: 95-105 被引量:140
标识
DOI:10.1016/j.ejca.2021.01.028
摘要

Abstract

Purpose

The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound.

Methods

Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness.

Results

The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor–positive/human epidermal growth factor receptor 2 (HER2)–negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful.

Conclusion

A deep learning–based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
maox1aoxin应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
85搏一博应助vv采纳,获得10
1秒前
炙热往事发布了新的文献求助10
4秒前
4秒前
七七完成签到,获得积分10
5秒前
5秒前
勤恳的念云完成签到,获得积分10
5秒前
7秒前
NexusExplorer应助小肥吴采纳,获得10
7秒前
shizi发布了新的文献求助10
8秒前
8秒前
11秒前
11秒前
icewuwu完成签到,获得积分10
12秒前
聪仔应助科研小废物采纳,获得30
13秒前
无限的函发布了新的文献求助10
13秒前
13秒前
可爱的函函应助scc采纳,获得10
14秒前
14秒前
16秒前
张姣姣完成签到,获得积分10
16秒前
17秒前
华仔应助闵SUGA采纳,获得10
17秒前
18秒前
流年完成签到,获得积分10
18秒前
王计恩发布了新的文献求助30
18秒前
快乐帽子完成签到,获得积分10
18秒前
修仙应助小超人哈里采纳,获得10
19秒前
diu应助小超人哈里采纳,获得10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243893
求助须知:如何正确求助?哪些是违规求助? 2887776
关于积分的说明 8249778
捐赠科研通 2556393
什么是DOI,文献DOI怎么找? 1384529
科研通“疑难数据库(出版商)”最低求助积分说明 649877
邀请新用户注册赠送积分活动 625867