Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

医学 病态的 列线图 乳腺癌 队列 接收机工作特性 置信区间 肿瘤科 新辅助治疗 放射科 内科学 癌症
作者
Meng Jiang,Changli Li,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Xu Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:147: 95-105 被引量:202
标识
DOI:10.1016/j.ejca.2021.01.028
摘要

Abstract

Purpose

The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound.

Methods

Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness.

Results

The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor–positive/human epidermal growth factor receptor 2 (HER2)–negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful.

Conclusion

A deep learning–based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssl关闭了ssl文献求助
刚刚
爱听歌笑柳完成签到,获得积分10
刚刚
无极微光应助HY采纳,获得20
刚刚
1秒前
七面东风发布了新的文献求助10
3秒前
3秒前
情怀应助独特广山采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
玖玖发布了新的文献求助10
6秒前
哈哈哈哈完成签到,获得积分10
7秒前
杰杰完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
赘婿应助hyr采纳,获得10
9秒前
9秒前
Juni完成签到,获得积分10
10秒前
10秒前
黄旭关注了科研通微信公众号
10秒前
负责琦发布了新的文献求助10
10秒前
11秒前
11秒前
正直冰露发布了新的文献求助10
12秒前
热情的远锋完成签到 ,获得积分10
13秒前
volunteer完成签到 ,获得积分10
14秒前
sanner发布了新的文献求助10
14秒前
华生发布了新的文献求助10
15秒前
16秒前
unravel发布了新的文献求助10
16秒前
pluto应助WYQX采纳,获得100
16秒前
剑舞红颜笑完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
SJJ应助lrt采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572125
求助须知:如何正确求助?哪些是违规求助? 4657321
关于积分的说明 14720115
捐赠科研通 4598123
什么是DOI,文献DOI怎么找? 2523566
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464416