Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

医学 病态的 列线图 乳腺癌 队列 接收机工作特性 置信区间 肿瘤科 新辅助治疗 放射科 内科学 癌症
作者
Meng Jiang,Changli Li,Xiaomao Luo,Zhi-Rui Chuan,Wenzhi Lv,Xu Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:147: 95-105 被引量:202
标识
DOI:10.1016/j.ejca.2021.01.028
摘要

Abstract

Purpose

The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound.

Methods

Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness.

Results

The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor–positive/human epidermal growth factor receptor 2 (HER2)–negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful.

Conclusion

A deep learning–based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗觉觉发布了新的文献求助10
1秒前
科目三应助zhj采纳,获得10
2秒前
张张zzz完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Hello应助发文章12138采纳,获得10
3秒前
3秒前
孙浩洋发布了新的文献求助10
3秒前
LL关闭了LL文献求助
3秒前
春意盎然完成签到,获得积分10
3秒前
chenyao发布了新的文献求助10
3秒前
3秒前
3秒前
李扒皮完成签到,获得积分10
3秒前
所所应助你维好困采纳,获得10
4秒前
CodeCraft应助你维好困采纳,获得10
4秒前
吕亦寒完成签到,获得积分10
4秒前
Jasper应助清浅采纳,获得10
4秒前
whiteandpink098完成签到,获得积分10
4秒前
5秒前
5秒前
野性的牛排完成签到,获得积分10
5秒前
连长发布了新的文献求助10
5秒前
李健应助ernest采纳,获得10
5秒前
Jasper应助love454106采纳,获得10
6秒前
WTL完成签到,获得积分10
6秒前
追光者完成签到,获得积分10
7秒前
7秒前
赘婿应助萤火虫采纳,获得10
7秒前
hbb完成签到,获得积分20
8秒前
8秒前
Huang发布了新的文献求助10
9秒前
Akim应助1a采纳,获得10
9秒前
9秒前
婷123发布了新的文献求助10
9秒前
李爱国应助Voyage采纳,获得10
9秒前
材料小白发布了新的文献求助10
10秒前
德容发布了新的文献求助10
10秒前
怡然的魔镜完成签到,获得积分10
10秒前
Leon Lai发布了新的文献求助10
10秒前
辛勤雨柏完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006