MGAT: Multimodal Graph Attention Network for Recommendation

计算机科学 电影 模式 利用 二部图 图形 机器学习 推荐系统 人工智能 情报检索 稳健性(进化) 粒度 注意力网络 人机交互 理论计算机科学 协同过滤 操作系统 基因 社会学 化学 生物化学 计算机安全 社会科学
作者
Zhulin Tao,Yinwei Wei,Xiang Wang,Xiangnan He,Xianglin Huang,Tat‐Seng Chua
出处
期刊:Information Processing and Management [Elsevier]
卷期号:57 (5): 102277-102277 被引量:133
标识
DOI:10.1016/j.ipm.2020.102277
摘要

Graph neural networks (GNNs) have shown great potential for personalized recommendation. At the core is to reorganize interaction data as a user-item bipartite graph and exploit high-order connectivity among user and item nodes to enrich their representations. While achieving great success, most existing works consider interaction graph based only on ID information, foregoing item contents from multiple modalities (e.g., visual, acoustic, and textual features of micro-video items). Distinguishing personal interests on different modalities at a granular level was not explored until recently proposed MMGCN (Wei et al., 2019). However, it simply employs GNNs on parallel interaction graphs and treats information propagated from all neighbors equally, failing to capture user preference adaptively. Hence, the obtained representations might preserve redundant, even noisy information, leading to non-robustness and suboptimal performance. In this work, we aim to investigate how to adopt GNNs on multimodal interaction graphs, to adaptively capture user preference on different modalities and offer in-depth analysis on why an item is suitable to a user. Towards this end, we propose a new Multimodal Graph Attention Network, short for MGAT, which disentangles personal interests at the granularity of modality. In particular, built upon multimodal interaction graphs, MGAT conducts information propagation within individual graphs, while leveraging the gated attention mechanism to identify varying importance scores of different modalities to user preference. As such, it is able to capture more complex interaction patterns hidden in user behaviors and provide a more accurate recommendation. Empirical results on two micro-video recommendation datasets, Tiktok and MovieLens, show that MGAT exhibits substantial improvements over the state-of-the-art baselines like NGCF (Wang, He, et al., 2019) and MMGCN (Wei et al., 2019). Further analysis on a case study illustrates how MGAT generates attentive information flow over multimodal interaction graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助xw采纳,获得10
刚刚
韭黄完成签到,获得积分10
1秒前
pluto应助zz采纳,获得10
2秒前
共享精神应助一粒星辰采纳,获得10
2秒前
单薄的嵩完成签到,获得积分10
3秒前
4秒前
4秒前
九九完成签到 ,获得积分10
5秒前
CipherSage应助低空飞行采纳,获得10
6秒前
zzz发布了新的文献求助10
6秒前
隐形曼青应助南昌黑人采纳,获得10
7秒前
zz完成签到,获得积分10
8秒前
9秒前
9秒前
LL完成签到 ,获得积分10
9秒前
韩雨桐发布了新的文献求助10
9秒前
潍澤发布了新的文献求助10
9秒前
顺利凡阳完成签到 ,获得积分10
9秒前
10秒前
小蘑菇应助勤劳的身影采纳,获得10
11秒前
11秒前
11秒前
暴躁的晓啸完成签到 ,获得积分10
12秒前
12秒前
段丑发布了新的文献求助10
12秒前
韭菜完成签到,获得积分10
12秒前
所所应助吕吕采纳,获得10
13秒前
jonathan发布了新的文献求助10
13秒前
ShellyHan发布了新的文献求助80
16秒前
归尘发布了新的文献求助10
16秒前
安安完成签到 ,获得积分10
17秒前
17秒前
17秒前
17秒前
8R60d8完成签到,获得积分0
17秒前
jonathan完成签到,获得积分10
18秒前
果力成发布了新的文献求助10
18秒前
热心盼山发布了新的文献求助30
19秒前
李健的小迷弟应助康伟秋采纳,获得10
19秒前
咪呼发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555383
求助须知:如何正确求助?哪些是违规求助? 3131010
关于积分的说明 9389629
捐赠科研通 2830491
什么是DOI,文献DOI怎么找? 1556069
邀请新用户注册赠送积分活动 726432
科研通“疑难数据库(出版商)”最低求助积分说明 715738