串联
钙钛矿(结构)
材料科学
带隙
光电子学
量子效率
钝化
钙钛矿太阳能电池
硅
异质结
光致发光
能量转换效率
纳米技术
化学工程
复合材料
图层(电子)
工程类
作者
Patricia S. C. Schulze,Alexander J. Bett,Martin Bivour,Pietro Caprioglio,Fabian M. Gerspacher,Özde Ş. Kabaklı,Armin Richter,Martin Stolterfoht,Qinxin Zhang,Dieter Neher,Martin Hermle,Harald Hillebrecht,Stefan W. Glunz,Jan Christoph Goldschmidt
出处
期刊:Solar RRL
[Wiley]
日期:2020-05-08
卷期号:4 (7)
被引量:93
标识
DOI:10.1002/solr.202000152
摘要
Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p–i–n tandem configuration. A methylammonium‐free FA 0.75 Cs 0.25 Pb(I 0.8 Br 0.2 ) 3 perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in ≈75 nm thicker absorber layers and 0.7 mA cm −2 higher short‐circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI