3D Reconstruction and Measurement of Surface Defects in Prefabricated Elements Using Point Clouds

点云 激光扫描 过程(计算) 数据预处理 计算机科学 质量(理念) 数据挖掘 预处理器 工程类 数据库 人工智能 激光器 物理 光学 操作系统 哲学 认识论
作者
Zhao Xu,Rui Kang,Ruodan Lu
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:34 (5) 被引量:63
标识
DOI:10.1061/(asce)cp.1943-5487.0000920
摘要

Due to a higher efficiency and lower cost, prefabricated construction is gradually gaining acceptance within the market. Laser scanning has already been adopted in civil engineering to reconstruct a three-dimensional (3D) model of a structure, to monitor the deformation, and so on. This paper seeks to explore a more automated and accurate quality control process, focusing on the surface defects in prefabricated elements. Laser scanning is adopted for data collection and the 3D reconstruction of the prefabricated components. Besides, a new point cloud preprocessing, involving the K-nearest neighbors (KNN) algorithm, a reduction of the data dimension, and data gridding, is developed to improve the efficiency and accuracy of subsequent algorithms. The Delaunay triangle is used to extract the contour of the point cloud, and then the contour is fitted to further determine the geometric data. Meanwhile, a comprehensive quality control system of prefabricated components based on relevant specifications is proposed, and the quality of prefabricated components is monitored intuitively by the values of indicators. In order to integrate it into the building information modeling (BIM) platform and better store the obtained quality information, the production quality information is designed to be extended to the Industry Foundation Classes (IFC) standard. The proposed approach will be applied to analyze the causes of quality problems in the production process and strengthen the quality control. This study designs a more efficient and accurate quality evaluation process, including data collection, data processing, indicator calculation, and quality evaluation. Moreover, the results moving forward can provide feedback to the cause of the quality issues and further improve the production quality of prefabricated elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ceicic采纳,获得10
刚刚
tangt糖糖完成签到,获得积分10
刚刚
自由溪灵完成签到,获得积分10
刚刚
赵鑫发布了新的文献求助20
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
扎心应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
sgr应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
SYLH应助哈哈哈嘻嘻啦啦采纳,获得20
3秒前
Orange应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
授业解惑的哑铃完成签到,获得积分10
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
YIFEI给YIFEI的求助进行了留言
4秒前
ll应助抖逗豆采纳,获得10
5秒前
随风发布了新的文献求助10
5秒前
朝歌完成签到,获得积分10
5秒前
执念发布了新的文献求助10
5秒前
dd发布了新的文献求助10
5秒前
ary完成签到 ,获得积分10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420