雷公藤醇
胶质瘤
坏死性下垂
化学
IC50型
癌症研究
细胞凋亡
程序性细胞死亡
体外
细胞毒性
细胞培养
生物化学
药理学
生物
遗传学
作者
Feng Yao,Wenbao Wang,Yan Zhang,Xuefeng Fu,Kunqi Ping,Jiaxing Zhao,Yu Lei,Yanhua Mou,Shaojie Wang
标识
DOI:10.1016/j.ejmech.2021.114070
摘要
Celastrol, a quinone methide triterpenoid, possesses potential anti-glioma activity. However, its relatively low activity limit its application as an effective agent for glioma treatment. In search for effective anti-glioma agents, this work designed and synthesized two series of celastrol C-3 OH and C-20 COOH derivatives 4a-4o and 6a-6o containing 1, 2, 3-triazole moiety. Their anti-glioma activities against four human glioma cell lines (A172, LN229, U87, and U251) were then evaluated using MTT assay in vitro. Results showed that compound 6i (IC50 = 0.94 μM) exhibited substantial antiproliferative activity against U251 cell line, that was 4.7-fold more potent than that of celastrol (IC50 = 4.43 μM). In addition, compound 6i remarkably inhibited the colony formation and migration of U251 cells. Further transmission electron microscopy and mitochondrial depolarization assays in U251 cells indicated that the potent anti-glioma activity of 6i was attributed to necroptosis. Mechanism investigation revealed that compound 6i induced necroptosis mainly by activating the RIP1/RIP3/MLKL pathway. Additionally, compound 6i exerted acceptable BBB permeability in mice and inhibited U251 cell proliferation in an in vivo zebrafish xenograft model, obviously. In summary, compound 6i might be a promising lead compound for potent celastrol derivatives as anti-glioma agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI