Group-Wise Learning for Weakly Supervised Semantic Segmentation

计算机科学 人工智能 分割 基本事实 图像分割 语义鸿沟 深度学习 语义学(计算机科学) 图形 帕斯卡(单位) 机器学习 模式识别(心理学) 自然语言处理 理论计算机科学 图像(数学) 图像检索 程序设计语言
作者
Tianfei Zhou,Liulei Li,Xueyi Li,Chun-Mei Feng,Jianwu Li,Ling Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 799-811 被引量:56
标识
DOI:10.1109/tip.2021.3132834
摘要

Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, which require pixel-level annotations. This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation. To achieve this, we propose, for the first time, a novel group-wise learning framework for WSSS. The framework explicitly encodes semantic dependencies in a group of images to discover rich semantic context for estimating more reliable pseudo ground-truths, which are subsequently employed to train more effective segmentation models. In particular, we solve the group-wise learning within a graph neural network (GNN), wherein input images are represented as graph nodes, and the underlying relations between a pair of images are characterized by graph edges. We then formulate semantic mining as an iterative reasoning process which propagates the common semantics shared by a group of images to enrich node representations. Moreover, in order to prevent the model from paying excessive attention to common semantics, we further propose a graph dropout layer to encourage the graph model to capture more accurate and complete object responses. With the above efforts, our model lays the foundation for more sophisticated and flexible group-wise semantic mining. We conduct comprehensive experiments on the popular PASCAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. In addition, our model shows promising performance in weakly supervised object localization (WSOL) on the CUB-200-2011 dataset, demonstrating strong generalizability. Our code is available at: https://github.com/Lixy1997/Group-WSSS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵溪完成签到 ,获得积分10
1秒前
故意的沛蓝完成签到,获得积分10
1秒前
1秒前
小巧日记本完成签到,获得积分10
1秒前
7275XXX完成签到,获得积分10
2秒前
我是老大应助xwc采纳,获得30
3秒前
123完成签到,获得积分10
4秒前
ChangSZ应助研友_8oYg4n采纳,获得10
4秒前
思源应助暴躁的安柏采纳,获得10
5秒前
5秒前
李繁蕊发布了新的文献求助10
5秒前
Evelyn关注了科研通微信公众号
6秒前
6秒前
WKY完成签到,获得积分10
7秒前
manan发布了新的文献求助10
7秒前
亮亮关注了科研通微信公众号
7秒前
yuming完成签到,获得积分10
7秒前
8秒前
Curllen完成签到,获得积分10
8秒前
lzj001983发布了新的文献求助10
8秒前
8秒前
shouyu29应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
立波完成签到,获得积分10
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
shouyu29应助科研通管家采纳,获得10
10秒前
许win应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740