Exploring the Risky Travel Area and Behavior of Car-hailing Service

计算机科学 订单(交换) 服务(商务) 警报 计算机安全 数据科学 业务 财务 复合材料 营销 材料科学
作者
Hongting Niu,Hengshu Zhu,Ying Sun,Xinjiang Lu,Jing Sun,Zhiyuan Zhao,Hui Xiong,Bo Lang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:13 (1): 1-22 被引量:1
标识
DOI:10.1145/3465059
摘要

Recent years have witnessed the rapid development of car-hailing services, which provide a convenient approach for connecting passengers and local drivers using their personal vehicles. At the same time, the concern on passenger safety has gradually emerged and attracted more and more attention. While car-hailing service providers have made considerable efforts on developing real-time trajectory tracking systems and alarm mechanisms, most of them only focus on providing rescue-supporting information rather than preventing potential crimes. Recently, the newly available large-scale car-hailing order data have provided an unparalleled chance for researchers to explore the risky travel area and behavior of car-hailing services, which can be used for building an intelligent crime early warning system. To this end, in this article, we propose a Risky Area and Risky Behavior Evaluation System (RARBEs) based on the real-world car-hailing order data. In RARBEs, we first mine massive multi-source urban data and train an effective area risk prediction model, which estimates area risk at the urban block level. Then, we propose a transverse and longitudinal double detection method, which estimates behavior risk based on two aspects, including fraud trajectory recognition and fraud patterns mining. In particular, we creatively propose a bipartite graph-based algorithm to model the implicit relationship between areas and behaviors, which collaboratively adjusts area risk and behavior risk estimation based on random walk regularization. Finally, extensive experiments on multi-source real-world urban data clearly validate the effectiveness and efficiency of our system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助甜美不评采纳,获得10
3秒前
bbbin完成签到 ,获得积分10
6秒前
nn完成签到 ,获得积分10
6秒前
orixero应助文武采纳,获得10
6秒前
denty完成签到,获得积分10
10秒前
大个应助高高千筹采纳,获得10
10秒前
11秒前
12秒前
major完成签到 ,获得积分10
14秒前
削菠萝完成签到,获得积分20
14秒前
烂漫亦云完成签到,获得积分10
15秒前
甜美不评发布了新的文献求助10
16秒前
18秒前
哦啦啦发布了新的文献求助50
19秒前
RenSiyu完成签到,获得积分10
19秒前
21秒前
jany完成签到,获得积分20
21秒前
fgpa发布了新的文献求助10
23秒前
24秒前
小蘑菇应助狂野筝采纳,获得10
26秒前
壮观的龙猫完成签到,获得积分10
26秒前
毛彬完成签到,获得积分20
30秒前
33秒前
fuxiao完成签到 ,获得积分10
35秒前
36秒前
ShellyMaya完成签到 ,获得积分10
36秒前
四月完成签到,获得积分10
39秒前
哦呵呵哈哈啦啦完成签到 ,获得积分10
40秒前
科研通AI2S应助MQ采纳,获得10
40秒前
狂野筝发布了新的文献求助10
41秒前
45秒前
47秒前
饼饼完成签到,获得积分10
47秒前
BBK发布了新的文献求助10
51秒前
狂野筝完成签到,获得积分10
56秒前
59秒前
领导范儿应助jiangqingquan采纳,获得10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
寒来暑往应助科研通管家采纳,获得10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340523
求助须知:如何正确求助?哪些是违规求助? 2968522
关于积分的说明 8633997
捐赠科研通 2648031
什么是DOI,文献DOI怎么找? 1449967
科研通“疑难数据库(出版商)”最低求助积分说明 671609
邀请新用户注册赠送积分活动 660663