亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer prior knowledge from surrogate modelling: A meta-learning approach

替代模型 计算机科学 可靠性(半导体) 灵敏度(控制系统) 任务(项目管理) 适应(眼睛) 人工智能 机器学习 范围(计算机科学) 系统工程 工程类 物理 功率(物理) 程序设计语言 光学 量子力学 电子工程
作者
Minghui Cheng,Chao Dang,Dan M. Frangopol,Michael Beer,Xian-Xun Yuan
出处
期刊:Computers & Structures [Elsevier]
卷期号:260: 106719-106719 被引量:2
标识
DOI:10.1016/j.compstruc.2021.106719
摘要

• Propose a meta-learning-based surrogate modelling (MLSM) framework for knowledge transfer. • Provide the definition of similar tasks and identify the scope of the framework. • Outline the applications to global sensitivity analysis, reliability analysis, and optimization. • Demonstrate the ability of the framework to transfer prior knowledge and show the computational efficiency. Surrogate modelling has emerged as a useful technique to study complex physical and engineering systems in various disciplines, especially for engineering analysis. Previous studies mostly focused on developing new surrogate models and/or applying existing surrogate models to practical problems. Despite the computational efficiency, the surrogate for a new task is often built from scratch and the knowledge gained from previous surrogate modelling for similar tasks is neglected. As the need for quickly modifying simulation models to reflect design changes has significantly increased, one potential solution is to utilize prior knowledge from surrogate modelling. In this study, a novel meta-learning-based surrogate modelling framework is presented. The framework includes two phases: a meta-training and a few-shot learning phase. A meta-model that represents a family of tasks and the adaptation of this model to a new task with few data points are the results of the first and second phase, respectively. The study specifies the scope of the framework by classifying similar tasks. Applications of the framework to global sensitivity analysis, optimization, and reliability analysis are also addressed. Four numerical experiments are performed to demonstrate the feasibility and applicability of the framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kenti2023完成签到 ,获得积分10
2秒前
orange9发布了新的文献求助10
6秒前
学不完了完成签到 ,获得积分10
6秒前
zfcaabbcc发布了新的文献求助10
6秒前
zfcaabbcc完成签到,获得积分10
20秒前
大衣猫完成签到,获得积分10
21秒前
23秒前
ye完成签到,获得积分10
24秒前
26秒前
32秒前
35秒前
乐乐应助wang5945采纳,获得10
37秒前
科研小强发布了新的文献求助10
39秒前
优雅夕阳完成签到 ,获得积分10
39秒前
中九完成签到 ,获得积分10
43秒前
冷淡芝麻完成签到 ,获得积分10
44秒前
尼可刹米洛贝林完成签到,获得积分10
47秒前
57秒前
58秒前
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
丘比特应助大衣猫采纳,获得10
1分钟前
传奇3应助qaz123采纳,获得10
1分钟前
zmaifyc完成签到 ,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
tylscxf完成签到,获得积分10
1分钟前
1分钟前
Hayat应助随机子采纳,获得50
1分钟前
cy完成签到 ,获得积分10
1分钟前
卡酷一发布了新的文献求助10
1分钟前
哔噗哔噗完成签到 ,获得积分10
1分钟前
Orange应助卡酷一采纳,获得10
1分钟前
哎呦喂喂应助木由采纳,获得10
1分钟前
zqzqz完成签到,获得积分10
1分钟前
暴走乄发布了新的文献求助40
1分钟前
哎呦喂喂应助livialiu采纳,获得10
1分钟前
zqzqz发布了新的文献求助10
1分钟前
aaa完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379069
求助须知:如何正确求助?哪些是违规求助? 2994571
关于积分的说明 8759702
捐赠科研通 2679092
什么是DOI,文献DOI怎么找? 1467485
科研通“疑难数据库(出版商)”最低求助积分说明 678691
邀请新用户注册赠送积分活动 670381