Hydrogen and Ethylene Production through Water-Splitting and Ethane Dehydrogenation Using BaFe0.9Zr0.1O3- δ Mixed-Conductors

脱氢 氧气 渗透 化学 制氢 分压 惰性气体 无机化学 乙烯 化学工程 材料科学 催化作用 有机化学 工程类 生物化学
作者
Georgios Dimitrakopoulos,Robert C. Schucker,Kasia Derrickson,J.R. Johnson,Karina K. Kopeć,Lei Shao,Faisal Alahmadi,Ahmed F. Ghoniem
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (39): 1750-1750
标识
DOI:10.1149/ma2017-02/39/1750
摘要

Hydrogen production from water-splitting has attracted significant interest because of its use in refining, chemicals’ production and as an alternative fuel. A promising technology for hydrogen production through water-splitting at moderate temperatures is the use of mixed ionic-electronic conducting (MIEC) membranes [1-2]. Using an inert gas on the oxygen-lean side, oxygen permeation rates are slow unless vacuum is used (or higher pressure on the feed side). Fuel addition in the oxygen-lean stream raises the oxygen chemical potential difference and hence the oxygen permeation and hydrogen production rate increase significantly [1-5]. One such fuel is ethane whose partial dehydrogenation leads to a valuable chemical, namely ethylene. Coupling water-splitting and ethane dehydrogenation using a MIEC membrane can reduce the complexity and capital cost of producing both (process intensification). This study investigated the co-production of hydrogen and ethylene using BaFe 0.9 Zr 0.1 O 3- δ membranes. Experimental measurements performed in a button-cell reactor showed significant oxygen permeation, ethane conversion and selectivity to ethylene. The performance of a 1.1 mm thick membrane operating at inlet X H2O =50% at the steam side (balance is nitrogen) was investigated as a function of temperature and inlet ethane mole fraction at the oxygen-lean side (balance is helium). At T=900 °C and X C2H6 =10%, the oxygen permeation flux (J O2 ) was ≈ 2.0 μmole/cm 2 /sec, while the ethane conversion and selectivity to ethylene were 95% and 83%, respectively. At these conditions, the combination of gas-phase and surface reactions lead to the production of other products, such as hydrogen, methane, acetylene, carbon monoxide and carbon dioxide. When using ethane, the oxygen permeation through BaFe 0.9 Zr 0.1 O 3- δ increases due to electrochemical reactions of these products with oxygen ions on the membrane surface, while the electron transfer process takes place through a redox mechanism that involves iron and its different oxidation states [5]. Lowering the temperature to T=850 °C decreased the oxygen permeation flux to ≈ 1.0 μmole/cm 2 /sec and conversion of ethane to 79% while ethylene selectivity increased to 93%. Under long-term operation, BaFe 0.9 Zr 0.1 O 3- δ shows good stability. To further increase the performance of the material, we investigated the limitations imposed by surface reactions and charged species diffusion in an effort to identify the rate-limiting step in the overall oxygen permeation process. References: [1]: X. Wu, L. Chang, M. Uddi, P. Kirchen, A. F. Ghoniem, Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes, Phys. Chem. Chem. Phys. 17 (2015) 10093–10107. [2]: X. Wu, A. F. Ghoniem, M. Uddi, Enhancing co-production of H 2 and syngas via water splitting and POM on surface-modified oxygen permeable membranes, AIChE J. 62 (2016) 4427–4435. [3]: G. Dimitrakopoulos, A. F. Ghoniem, A two-step surface exchange mechanism and detailed defect transport to model oxygen permeation through the La 0.9 Ca 0.1 FeO 3- δ mixed-conductor, J. Membr. Sci. 510 (2016) 209–219. [4]: G. Dimitrakopoulos, A. F. Ghoniem, Role of gas-phase and surface chemistry in methane reforming using a La 0.9 Ca 0.1 FeO 3- δ oxygen transport membrane, Proc. Combust. Inst. 36 (2017) 4347–4354. [5]: G. Dimitrakopoulos, A. F. Ghoniem, Developing a multistep surface reaction mechanism to model the impact of H 2 and CO on the performance and defect chemistry of La 0.9 Ca 0.1 FeO 3- δ mixed-conductors, J. Membr. Sci. 529 (2017) 114-132.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助粗暴的达采纳,获得10
刚刚
Jasper应助粗暴的达采纳,获得10
刚刚
鲤鱼雨泽发布了新的文献求助10
1秒前
冷静发布了新的文献求助10
2秒前
gr发布了新的文献求助10
2秒前
3秒前
3秒前
开元完成签到,获得积分10
3秒前
星空完成签到,获得积分10
3秒前
流苏33完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
明亮的lunacake完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
jasmine发布了新的文献求助10
4秒前
4秒前
orixero应助Andrew采纳,获得10
4秒前
阿花完成签到,获得积分10
4秒前
凉笙墨染完成签到,获得积分10
5秒前
小马甲应助grata采纳,获得10
5秒前
生而追梦不止完成签到,获得积分10
5秒前
酷波er应助科研通管家采纳,获得30
5秒前
黑猫乾杯应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
SU15964707813完成签到,获得积分10
6秒前
单薄绿竹完成签到,获得积分10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
昭奚发布了新的文献求助30
6秒前
科研通AI2S应助聪慧若风采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
阿喵完成签到,获得积分10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
小小油应助科研通管家采纳,获得20
6秒前
黑猫乾杯应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SciGPT应助夕荀采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188