Hydrogen and Ethylene Production through Water-Splitting and Ethane Dehydrogenation Using BaFe0.9Zr0.1O3- δ Mixed-Conductors

脱氢 氧气 渗透 化学 制氢 分压 惰性气体 无机化学 乙烯 化学工程 材料科学 催化作用 有机化学 生物化学 工程类
作者
Georgios Dimitrakopoulos,Robert C. Schucker,Kasia Derrickson,J.R. Johnson,Karina K. Kopeć,Lei Shao,Faisal Alahmadi,Ahmed F. Ghoniem
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (39): 1750-1750
标识
DOI:10.1149/ma2017-02/39/1750
摘要

Hydrogen production from water-splitting has attracted significant interest because of its use in refining, chemicals’ production and as an alternative fuel. A promising technology for hydrogen production through water-splitting at moderate temperatures is the use of mixed ionic-electronic conducting (MIEC) membranes [1-2]. Using an inert gas on the oxygen-lean side, oxygen permeation rates are slow unless vacuum is used (or higher pressure on the feed side). Fuel addition in the oxygen-lean stream raises the oxygen chemical potential difference and hence the oxygen permeation and hydrogen production rate increase significantly [1-5]. One such fuel is ethane whose partial dehydrogenation leads to a valuable chemical, namely ethylene. Coupling water-splitting and ethane dehydrogenation using a MIEC membrane can reduce the complexity and capital cost of producing both (process intensification). This study investigated the co-production of hydrogen and ethylene using BaFe 0.9 Zr 0.1 O 3- δ membranes. Experimental measurements performed in a button-cell reactor showed significant oxygen permeation, ethane conversion and selectivity to ethylene. The performance of a 1.1 mm thick membrane operating at inlet X H2O =50% at the steam side (balance is nitrogen) was investigated as a function of temperature and inlet ethane mole fraction at the oxygen-lean side (balance is helium). At T=900 °C and X C2H6 =10%, the oxygen permeation flux (J O2 ) was ≈ 2.0 μmole/cm 2 /sec, while the ethane conversion and selectivity to ethylene were 95% and 83%, respectively. At these conditions, the combination of gas-phase and surface reactions lead to the production of other products, such as hydrogen, methane, acetylene, carbon monoxide and carbon dioxide. When using ethane, the oxygen permeation through BaFe 0.9 Zr 0.1 O 3- δ increases due to electrochemical reactions of these products with oxygen ions on the membrane surface, while the electron transfer process takes place through a redox mechanism that involves iron and its different oxidation states [5]. Lowering the temperature to T=850 °C decreased the oxygen permeation flux to ≈ 1.0 μmole/cm 2 /sec and conversion of ethane to 79% while ethylene selectivity increased to 93%. Under long-term operation, BaFe 0.9 Zr 0.1 O 3- δ shows good stability. To further increase the performance of the material, we investigated the limitations imposed by surface reactions and charged species diffusion in an effort to identify the rate-limiting step in the overall oxygen permeation process. References: [1]: X. Wu, L. Chang, M. Uddi, P. Kirchen, A. F. Ghoniem, Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes, Phys. Chem. Chem. Phys. 17 (2015) 10093–10107. [2]: X. Wu, A. F. Ghoniem, M. Uddi, Enhancing co-production of H 2 and syngas via water splitting and POM on surface-modified oxygen permeable membranes, AIChE J. 62 (2016) 4427–4435. [3]: G. Dimitrakopoulos, A. F. Ghoniem, A two-step surface exchange mechanism and detailed defect transport to model oxygen permeation through the La 0.9 Ca 0.1 FeO 3- δ mixed-conductor, J. Membr. Sci. 510 (2016) 209–219. [4]: G. Dimitrakopoulos, A. F. Ghoniem, Role of gas-phase and surface chemistry in methane reforming using a La 0.9 Ca 0.1 FeO 3- δ oxygen transport membrane, Proc. Combust. Inst. 36 (2017) 4347–4354. [5]: G. Dimitrakopoulos, A. F. Ghoniem, Developing a multistep surface reaction mechanism to model the impact of H 2 and CO on the performance and defect chemistry of La 0.9 Ca 0.1 FeO 3- δ mixed-conductors, J. Membr. Sci. 529 (2017) 114-132.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hao发布了新的文献求助10
刚刚
bosco发布了新的文献求助10
2秒前
万能图书馆应助CCY采纳,获得10
3秒前
科研小将完成签到,获得积分10
4秒前
6秒前
Ava应助Ashley采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
田様应助Xiaoyan采纳,获得10
8秒前
所所应助youyou糍粑采纳,获得10
9秒前
9秒前
昵称吧发布了新的文献求助20
11秒前
jzy发布了新的文献求助10
11秒前
脑洞疼应助日天的马铃薯采纳,获得10
11秒前
12秒前
上官若男应助单薄的浩阑采纳,获得10
13秒前
炎星语发布了新的文献求助10
13秒前
晓慕完成签到 ,获得积分10
13秒前
14秒前
xxxx完成签到 ,获得积分10
14秒前
14秒前
CipherSage应助大帅采纳,获得10
15秒前
小蘑菇应助否认冶游史采纳,获得10
15秒前
15秒前
15秒前
黄油屑屑发布了新的文献求助10
17秒前
17秒前
蔡从安发布了新的文献求助10
18秒前
酷波er应助Perry采纳,获得10
18秒前
希望天下0贩的0应助ju龙哥采纳,获得10
19秒前
烤地瓜发布了新的文献求助20
19秒前
研友_VZG7GZ应助季末默相依采纳,获得10
19秒前
20秒前
谭凯文发布了新的文献求助10
21秒前
22秒前
冷酷的听兰完成签到,获得积分10
22秒前
22秒前
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412516
求助须知:如何正确求助?哪些是违规求助? 3015217
关于积分的说明 8869123
捐赠科研通 2702867
什么是DOI,文献DOI怎么找? 1481929
科研通“疑难数据库(出版商)”最低求助积分说明 685086
邀请新用户注册赠送积分活动 679733