已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hydrogen and Ethylene Production through Water-Splitting and Ethane Dehydrogenation Using BaFe0.9Zr0.1O3- δ Mixed-Conductors

脱氢 氧气 渗透 化学 制氢 分压 惰性气体 无机化学 乙烯 化学工程 材料科学 催化作用 有机化学 工程类 生物化学
作者
Georgios Dimitrakopoulos,Robert C. Schucker,Kasia Derrickson,J.R. Johnson,Karina K. Kopeć,Lei Shao,Faisal Alahmadi,Ahmed F. Ghoniem
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (39): 1750-1750
标识
DOI:10.1149/ma2017-02/39/1750
摘要

Hydrogen production from water-splitting has attracted significant interest because of its use in refining, chemicals’ production and as an alternative fuel. A promising technology for hydrogen production through water-splitting at moderate temperatures is the use of mixed ionic-electronic conducting (MIEC) membranes [1-2]. Using an inert gas on the oxygen-lean side, oxygen permeation rates are slow unless vacuum is used (or higher pressure on the feed side). Fuel addition in the oxygen-lean stream raises the oxygen chemical potential difference and hence the oxygen permeation and hydrogen production rate increase significantly [1-5]. One such fuel is ethane whose partial dehydrogenation leads to a valuable chemical, namely ethylene. Coupling water-splitting and ethane dehydrogenation using a MIEC membrane can reduce the complexity and capital cost of producing both (process intensification). This study investigated the co-production of hydrogen and ethylene using BaFe 0.9 Zr 0.1 O 3- δ membranes. Experimental measurements performed in a button-cell reactor showed significant oxygen permeation, ethane conversion and selectivity to ethylene. The performance of a 1.1 mm thick membrane operating at inlet X H2O =50% at the steam side (balance is nitrogen) was investigated as a function of temperature and inlet ethane mole fraction at the oxygen-lean side (balance is helium). At T=900 °C and X C2H6 =10%, the oxygen permeation flux (J O2 ) was ≈ 2.0 μmole/cm 2 /sec, while the ethane conversion and selectivity to ethylene were 95% and 83%, respectively. At these conditions, the combination of gas-phase and surface reactions lead to the production of other products, such as hydrogen, methane, acetylene, carbon monoxide and carbon dioxide. When using ethane, the oxygen permeation through BaFe 0.9 Zr 0.1 O 3- δ increases due to electrochemical reactions of these products with oxygen ions on the membrane surface, while the electron transfer process takes place through a redox mechanism that involves iron and its different oxidation states [5]. Lowering the temperature to T=850 °C decreased the oxygen permeation flux to ≈ 1.0 μmole/cm 2 /sec and conversion of ethane to 79% while ethylene selectivity increased to 93%. Under long-term operation, BaFe 0.9 Zr 0.1 O 3- δ shows good stability. To further increase the performance of the material, we investigated the limitations imposed by surface reactions and charged species diffusion in an effort to identify the rate-limiting step in the overall oxygen permeation process. References: [1]: X. Wu, L. Chang, M. Uddi, P. Kirchen, A. F. Ghoniem, Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes, Phys. Chem. Chem. Phys. 17 (2015) 10093–10107. [2]: X. Wu, A. F. Ghoniem, M. Uddi, Enhancing co-production of H 2 and syngas via water splitting and POM on surface-modified oxygen permeable membranes, AIChE J. 62 (2016) 4427–4435. [3]: G. Dimitrakopoulos, A. F. Ghoniem, A two-step surface exchange mechanism and detailed defect transport to model oxygen permeation through the La 0.9 Ca 0.1 FeO 3- δ mixed-conductor, J. Membr. Sci. 510 (2016) 209–219. [4]: G. Dimitrakopoulos, A. F. Ghoniem, Role of gas-phase and surface chemistry in methane reforming using a La 0.9 Ca 0.1 FeO 3- δ oxygen transport membrane, Proc. Combust. Inst. 36 (2017) 4347–4354. [5]: G. Dimitrakopoulos, A. F. Ghoniem, Developing a multistep surface reaction mechanism to model the impact of H 2 and CO on the performance and defect chemistry of La 0.9 Ca 0.1 FeO 3- δ mixed-conductors, J. Membr. Sci. 529 (2017) 114-132.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJX应助刻苦的哑铃采纳,获得10
刚刚
小可爱啵完成签到,获得积分10
刚刚
夏秋完成签到,获得积分10
1秒前
欢欢完成签到,获得积分10
1秒前
2秒前
jason0023发布了新的文献求助10
5秒前
搞笑煎蛋完成签到 ,获得积分10
5秒前
欢欢发布了新的文献求助10
6秒前
andrele发布了新的文献求助10
9秒前
10秒前
欣__完成签到 ,获得积分10
12秒前
阳静完成签到 ,获得积分10
12秒前
12秒前
ding应助沿途东行采纳,获得10
12秒前
ssc发布了新的文献求助10
13秒前
酷波er应助1206425219密采纳,获得10
13秒前
宁秘发布了新的文献求助10
15秒前
李健的小迷弟应助test采纳,获得10
15秒前
大头娃娃发布了新的文献求助10
17秒前
Owen应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
冯佳祥完成签到,获得积分10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得30
19秒前
大模型应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
19秒前
21秒前
宁秘完成签到,获得积分10
21秒前
所所应助辰叶采纳,获得10
21秒前
科研通AI2S应助EMC采纳,获得10
24秒前
Avvei完成签到,获得积分10
24秒前
24秒前
goldenrod完成签到,获得积分10
24秒前
明理楷瑞发布了新的文献求助10
25秒前
harmon完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339