Hydrogen and Ethylene Production through Water-Splitting and Ethane Dehydrogenation Using BaFe0.9Zr0.1O3- δ Mixed-Conductors

脱氢 氧气 渗透 化学 制氢 分压 惰性气体 无机化学 乙烯 化学工程 材料科学 催化作用 有机化学 工程类 生物化学
作者
Georgios Dimitrakopoulos,Robert C. Schucker,Kasia Derrickson,J.R. Johnson,Karina K. Kopeć,Lei Shao,Faisal Alahmadi,Ahmed F. Ghoniem
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (39): 1750-1750
标识
DOI:10.1149/ma2017-02/39/1750
摘要

Hydrogen production from water-splitting has attracted significant interest because of its use in refining, chemicals’ production and as an alternative fuel. A promising technology for hydrogen production through water-splitting at moderate temperatures is the use of mixed ionic-electronic conducting (MIEC) membranes [1-2]. Using an inert gas on the oxygen-lean side, oxygen permeation rates are slow unless vacuum is used (or higher pressure on the feed side). Fuel addition in the oxygen-lean stream raises the oxygen chemical potential difference and hence the oxygen permeation and hydrogen production rate increase significantly [1-5]. One such fuel is ethane whose partial dehydrogenation leads to a valuable chemical, namely ethylene. Coupling water-splitting and ethane dehydrogenation using a MIEC membrane can reduce the complexity and capital cost of producing both (process intensification). This study investigated the co-production of hydrogen and ethylene using BaFe 0.9 Zr 0.1 O 3- δ membranes. Experimental measurements performed in a button-cell reactor showed significant oxygen permeation, ethane conversion and selectivity to ethylene. The performance of a 1.1 mm thick membrane operating at inlet X H2O =50% at the steam side (balance is nitrogen) was investigated as a function of temperature and inlet ethane mole fraction at the oxygen-lean side (balance is helium). At T=900 °C and X C2H6 =10%, the oxygen permeation flux (J O2 ) was ≈ 2.0 μmole/cm 2 /sec, while the ethane conversion and selectivity to ethylene were 95% and 83%, respectively. At these conditions, the combination of gas-phase and surface reactions lead to the production of other products, such as hydrogen, methane, acetylene, carbon monoxide and carbon dioxide. When using ethane, the oxygen permeation through BaFe 0.9 Zr 0.1 O 3- δ increases due to electrochemical reactions of these products with oxygen ions on the membrane surface, while the electron transfer process takes place through a redox mechanism that involves iron and its different oxidation states [5]. Lowering the temperature to T=850 °C decreased the oxygen permeation flux to ≈ 1.0 μmole/cm 2 /sec and conversion of ethane to 79% while ethylene selectivity increased to 93%. Under long-term operation, BaFe 0.9 Zr 0.1 O 3- δ shows good stability. To further increase the performance of the material, we investigated the limitations imposed by surface reactions and charged species diffusion in an effort to identify the rate-limiting step in the overall oxygen permeation process. References: [1]: X. Wu, L. Chang, M. Uddi, P. Kirchen, A. F. Ghoniem, Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes, Phys. Chem. Chem. Phys. 17 (2015) 10093–10107. [2]: X. Wu, A. F. Ghoniem, M. Uddi, Enhancing co-production of H 2 and syngas via water splitting and POM on surface-modified oxygen permeable membranes, AIChE J. 62 (2016) 4427–4435. [3]: G. Dimitrakopoulos, A. F. Ghoniem, A two-step surface exchange mechanism and detailed defect transport to model oxygen permeation through the La 0.9 Ca 0.1 FeO 3- δ mixed-conductor, J. Membr. Sci. 510 (2016) 209–219. [4]: G. Dimitrakopoulos, A. F. Ghoniem, Role of gas-phase and surface chemistry in methane reforming using a La 0.9 Ca 0.1 FeO 3- δ oxygen transport membrane, Proc. Combust. Inst. 36 (2017) 4347–4354. [5]: G. Dimitrakopoulos, A. F. Ghoniem, Developing a multistep surface reaction mechanism to model the impact of H 2 and CO on the performance and defect chemistry of La 0.9 Ca 0.1 FeO 3- δ mixed-conductors, J. Membr. Sci. 529 (2017) 114-132.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨旱莲完成签到,获得积分10
2秒前
scott_zip发布了新的文献求助10
2秒前
奥利给完成签到,获得积分10
2秒前
明明完成签到 ,获得积分10
3秒前
芹菜自愿内卷完成签到,获得积分10
3秒前
zokor完成签到 ,获得积分0
6秒前
努力退休小博士完成签到 ,获得积分10
7秒前
橙子完成签到,获得积分10
8秒前
陈补天完成签到 ,获得积分10
9秒前
CipherSage应助慧灰huihui采纳,获得10
10秒前
乐观健柏完成签到,获得积分10
11秒前
13秒前
CodeCraft应助大橙子采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
jeeya完成签到,获得积分10
15秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
伦语发布了新的文献求助10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
xuzj应助科研通管家采纳,获得10
17秒前
xuzj应助科研通管家采纳,获得10
17秒前
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
yull完成签到,获得积分10
18秒前
小巧书雪完成签到,获得积分10
21秒前
大大怪将军完成签到,获得积分10
22秒前
哈哈哈完成签到 ,获得积分0
22秒前
小怪完成签到,获得积分10
23秒前
爱吃泡芙完成签到,获得积分10
24秒前
白桃战士完成签到,获得积分10
25秒前
27秒前
qingchenwuhou完成签到 ,获得积分10
27秒前
XXX完成签到,获得积分10
28秒前
锡嘻完成签到 ,获得积分10
28秒前
29秒前
彗星入梦完成签到 ,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022