Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis

斑块性银屑病 医学 荟萃分析 银屑病 皮肤病科 重症监护医学 内科学
作者
É. Sbidian,Anna Chaimani,I. García‐Doval,Liz Doney,Corinna Dressler,Camille Hua,Carolyn Hughes,Luigi Naldi,Sivem Afach,Laurence Le Cleach
出处
期刊:The Cochrane library [Elsevier]
卷期号:2021 (12) 被引量:134
标识
DOI:10.1002/14651858.cd011535.pub4
摘要

Psoriasis is an immune-mediated disease for which some people have a genetic predisposition. The condition manifests in inflammatory effects on either the skin or joints, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. Several randomised controlled trials (RCTs) have compared the efficacy of the different systemic treatments in psoriasis against placebo. However, the relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head-to-head, which is why we chose to conduct a network meta-analysis.To compare the efficacy and safety of non-biological systemic agents, small molecules, and biologics for people with moderate-to-severe psoriasis using a network meta-analysis, and to provide a ranking of these treatments according to their efficacy and safety.For this living systematic review we updated our searches of the following databases monthly to September 2020: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. We searched two trials registers to the same date. We checked the reference lists of included studies and relevant systematic reviews for further references to eligible RCTs.Randomised controlled trials (RCTs) of systemic treatments in adults (over 18 years of age) with moderate-to-severe plaque psoriasis or psoriatic arthritis whose skin had been clinically diagnosed with moderate-to-severe psoriasis, at any stage of treatment, in comparison to placebo or another active agent. The primary outcomes of this review were: the proportion of participants who achieved clear or almost clear skin, that is, at least Psoriasis Area and Severity Index (PASI) 90 at induction phase (from 8 to 24 weeks after the randomisation), and the proportion of participants with serious adverse events (SAEs) at induction phase. We did not evaluate differences in specific adverse events.Several groups of two review authors independently undertook study selection, data extraction, 'Risk of bias' assessment, and analyses. We synthesised the data using pair-wise and network meta-analysis (NMA) to compare the treatments of interest and rank them according to their effectiveness (as measured by the PASI 90 score) and acceptability (the inverse of serious adverse events). We assessed the certainty of the body of evidence from the NMA for the two primary outcomes and all comparisons, according to CINeMA, as either very low, low, moderate, or high. We contacted study authors when data were unclear or missing. We used the surface under the cumulative ranking curve (SUCRA) to infer on treatment hierarchy: 0% (treatment is the worst for effectiveness or safety) to 100% (treatment is the best for effectiveness or safety).We included 158 studies (18 new studies for the update) in our review (57,831 randomised participants, 67.2% men, mainly recruited from hospitals). The overall average age was 45 years; the overall mean PASI score at baseline was 20 (range: 9.5 to 39). Most of these studies were placebo-controlled (58%), 30% were head-to-head studies, and 11% were multi-armed studies with both an active comparator and a placebo. We have assessed a total of 20 treatments. In all, 133 trials were multicentric (two to 231 centres). All but two of the outcomes included in this review were limited to the induction phase (assessment from 8 to 24 weeks after randomisation). We assessed many studies (53/158) as being at high risk of bias; 25 were at an unclear risk, and 80 at low risk. Most studies (123/158) declared funding by a pharmaceutical company, and 22 studies did not report their source of funding. Network meta-analysis at class level showed that all of the interventions (non-biological systemic agents, small molecules, and biological treatments) were significantly more effective than placebo in reaching PASI 90. At class level, in reaching PASI 90, the biologic treatments anti-IL17, anti-IL12/23, anti-IL23, and anti-TNF alpha were significantly more effective than the small molecules and the non-biological systemic agents. At drug level, infliximab, ixekizumab, secukinumab, brodalumab, risankizumab and guselkumab were significantly more effective in reaching PASI 90 than ustekinumab and three anti-TNF alpha agents: adalimumab, certolizumab, and etanercept. Ustekinumab and adalimumab were significantly more effective in reaching PASI 90 than etanercept; ustekinumab was more effective than certolizumab, and the clinical effectiveness of ustekinumab and adalimumab was similar. There was no significant difference between tofacitinib or apremilast and three non-biological drugs: fumaric acid esters (FAEs), ciclosporin and methotrexate. Network meta-analysis also showed that infliximab, ixekizumab, risankizumab, bimekizumab, secukinumab, guselkumab, and brodalumab outperformed other drugs when compared to placebo in reaching PASI 90. The clinical effectiveness of these drugs was similar, except for ixekizumab which had a better chance of reaching PASI 90 compared with secukinumab, guselkumab and brodalumab. The clinical effectiveness of these seven drugs was: infliximab (versus placebo): risk ratio (RR) 50.29, 95% confidence interval (CI) 20.96 to 120.67, SUCRA = 93.6; high-certainty evidence; ixekizumab (versus placebo): RR 32.48, 95% CI 27.13 to 38.87; SUCRA = 90.5; high-certainty evidence; risankizumab (versus placebo): RR 28.76, 95% CI 23.96 to 34.54; SUCRA = 84.6; high-certainty evidence; bimekizumab (versus placebo): RR 58.64, 95% CI 3.72 to 923.86; SUCRA = 81.4; high-certainty evidence; secukinumab (versus placebo): RR 25.79, 95% CI 21.61 to 30.78; SUCRA = 76.2; high-certainty evidence; guselkumab (versus placebo): RR 25.52, 95% CI 21.25 to 30.64; SUCRA = 75; high-certainty evidence; and brodalumab (versus placebo): RR 23.55, 95% CI 19.48 to 28.48; SUCRA = 68.4; moderate-certainty evidence. Conservative interpretation is warranted for the results for bimekizumab (as well as mirikizumab, tyrosine kinase 2 inhibitor, acitretin, ciclosporin, fumaric acid esters, and methotrexate), as these drugs, in the NMA, have been evaluated in few trials. We found no significant difference between any of the interventions and the placebo for the risk of SAEs. Nevertheless, the SAE analyses were based on a very low number of events with low to moderate certainty for all the comparisons. Thus, the results have to be viewed with caution and we cannot be sure of the ranking. For other efficacy outcomes (PASI 75 and Physician Global Assessment (PGA) 0/1) the results were similar to the results for PASI 90. Information on quality of life was often poorly reported and was absent for several of the interventions.Our review shows that compared to placebo, the biologics infliximab, ixekizumab, risankizumab, bimekizumab, secukinumab, guselkumab and brodalumab were the most effective treatments for achieving PASI 90 in people with moderate-to-severe psoriasis on the basis of moderate- to high-certainty evidence. This NMA evidence is limited to induction therapy (outcomes were measured from 8 to 24 weeks after randomisation) and is not sufficient for evaluation of longer-term outcomes in this chronic disease. Moreover, we found low numbers of studies for some of the interventions, and the young age (mean age of 45 years) and high level of disease severity (PASI 20 at baseline) may not be typical of patients seen in daily clinical practice. Another major concern is that short-term trials provide scanty and sometimes poorly-reported safety data and thus do not provide useful evidence to create a reliable risk profile of treatments. We found no significant difference in the assessed interventions and placebo in terms of SAEs, and the evidence for all the interventions was of low to moderate quality. In order to provide long-term information on the safety of the treatments included in this review, it will also be necessary to evaluate non-randomised studies and postmarketing reports released from regulatory agencies. In terms of future research, randomised trials directly comparing active agents are necessary once high-quality evidence of benefit against placebo is established, including head-to-head trials amongst and between non-biological systemic agents and small molecules, and between biological agents (anti-IL17 versus anti-IL23, anti-IL23 versus anti-IL12/23, anti-TNF alpha versus anti-IL12/23). Future trials should also undertake systematic subgroup analyses (e.g. assessing biological-naïve participants, baseline psoriasis severity, presence of psoriatic arthritis, etc.). Finally, outcome measure harmonisation is needed in psoriasis trials, and researchers should look at the medium- and long-term benefit and safety of the interventions and the comparative safety of different agents. Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟若剑完成签到,获得积分10
刚刚
1秒前
大模型应助庾稀采纳,获得10
1秒前
勤恳的嚓茶完成签到,获得积分10
1秒前
科研王子完成签到,获得积分10
2秒前
LLL完成签到,获得积分10
3秒前
洁净斑马发布了新的文献求助10
3秒前
谦让汝燕完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
闪闪的斑马完成签到,获得积分10
6秒前
书生完成签到,获得积分10
6秒前
柳易槐完成签到,获得积分10
7秒前
pwang_ecust完成签到,获得积分10
7秒前
shuicaoxi完成签到,获得积分20
7秒前
hx完成签到 ,获得积分10
8秒前
务实时光完成签到,获得积分10
8秒前
HCCha完成签到,获得积分10
9秒前
9秒前
...完成签到 ,获得积分0
11秒前
暮晓见完成签到 ,获得积分10
11秒前
13秒前
wx发布了新的文献求助50
13秒前
Tonald Yang发布了新的文献求助10
13秒前
myg123完成签到 ,获得积分10
15秒前
Sean完成签到,获得积分10
17秒前
夏紫儿完成签到 ,获得积分10
17秒前
东方琉璃完成签到,获得积分10
18秒前
典雅的夜安完成签到,获得积分10
18秒前
KouZL完成签到,获得积分10
18秒前
yyy发布了新的文献求助10
19秒前
故渊完成签到,获得积分10
20秒前
20秒前
20秒前
忧心的若云完成签到,获得积分10
20秒前
Lensin完成签到 ,获得积分10
21秒前
TheQ完成签到,获得积分10
21秒前
红叶完成签到,获得积分10
24秒前
羊知鱼完成签到,获得积分10
24秒前
徐旖旎完成签到,获得积分10
24秒前
背完单词好睡觉完成签到 ,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027