计算机科学
人工智能
自然语言处理
强化学习
语义相似性
相似性(几何)
语义学(计算机科学)
机器翻译
语义计算
词(群论)
语义压缩
文本分割
信息抽取
分割
语义技术
语义网
语言学
哲学
图像(数学)
程序设计语言
作者
Guanlin Chen,Xiaolong Shi,Moke Chen,Liang Zhou
出处
期刊:International Journal of Security and Networks
[Inderscience Enterprises Ltd.]
日期:2020-01-01
卷期号:15 (1): 59-59
被引量:11
标识
DOI:10.1504/ijsn.2020.106526
摘要
Semantic analysis is a fundamental technology in natural language processing. Semantic similarity calculations are involved in many applications of natural language processing, such as QA system, machine translation, text similarity calculation, text classification, information extraction and even speed recognition, etc. This paper proposes a new framework for computing semantic similarity: deep reinforcement learning for Siamese attention structure model (DRSASM). The model learns word segmentation automatically and word distillation automatically through reinforcement learning. The overall architecture LSTM network to extract semantic features, and then introduces a new attention mechanism model to enhance semantics. The experiment show that this new model on the SNLI dataset and Chinese business dataset can improve the accuracy compared to current base line structure models.
科研通智能强力驱动
Strongly Powered by AbleSci AI