Development and Validation of a Deep Learning CT Signature to Predict Survival and Chemotherapy Benefit in Gastric Cancer

医学 列线图 危险系数 内科学 肿瘤科 队列 阶段(地层学) 比例危险模型 癌症 置信区间 生物 古生物学
作者
Yuming Jiang,Cheng Jin,Heng Yu,Jia Wu,Chuanli Chen,Qingyu Yuan,Weicai Huang,Yanfeng Hu,Yikai Xu,Zhiwei Zhou,George A. Fisher,Guoxin Li,Ruijiang Li
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:274 (6): e1153-e1161 被引量:75
标识
DOI:10.1097/sla.0000000000003778
摘要

Objective: We aimed to develop a deep learning-based signature to predict prognosis and benefit from adjuvant chemotherapy using preoperative computed tomography (CT) images. Background: Current staging methods do not accurately predict the risk of disease relapse for patients with gastric cancer. Methods: We proposed a novel deep neural network (S-net) to construct a CT signature for predicting disease-free survival (DFS) and overall survival in a training cohort of 457 patients, and independently tested it in an external validation cohort of 1158 patients. An integrated nomogram was constructed to demonstrate the added value of the imaging signature to established clinicopathologic factors for individualized survival prediction. Prediction performance was assessed with respect to discrimination, calibration, and clinical usefulness. Results: The DeLIS was associated with DFS and overall survival in the overall validation cohort and among subgroups defined by clinicopathologic variables, and remained an independent prognostic factor in multivariable analysis ( P < 0.001). Integrating the imaging signature and clinicopathologic factors improved prediction performance, with C-indices: 0.792–0.802 versus 0.719–0.724, and net reclassification improvement 10.1%–28.3%. Adjuvant chemotherapy was associated with improved DFS in stage II patients with high-DeLIS [hazard ratio = 0.362 (95% confidence interval 0.149–0.882)] and stage III patients with high- and intermediate-DeLIS [hazard ratio = 0.611 (0.442–0.843); 0.633 (0.433–0.925)]. On the other hand, adjuvant chemotherapy did not affect survival for patients with low-DeLIS, suggesting a predictive effect ( P interaction = 0.048, 0.016 for DFS in stage II and III disease). Conclusions: The proposed imaging signature improved prognostic prediction and could help identify patients most likely to benefit from adjuvant chemotherapy in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小费发布了新的文献求助10
1秒前
Tian完成签到,获得积分10
2秒前
小丑完成签到 ,获得积分10
2秒前
陈诗婷发布了新的文献求助10
2秒前
爱吃狼的小红帽完成签到 ,获得积分10
3秒前
3秒前
彭于晏应助卫思风采纳,获得30
3秒前
huhu发布了新的文献求助10
3秒前
3秒前
yozi发布了新的文献求助10
4秒前
共享精神应助云墨采纳,获得10
4秒前
gexiaoyang完成签到 ,获得积分10
4秒前
一生平安应助猴猴采纳,获得30
4秒前
Linco发布了新的文献求助10
4秒前
可爱的函函应助Mae采纳,获得30
4秒前
大方颦完成签到 ,获得积分10
5秒前
6秒前
6秒前
镓氧锌钇铀应助顺心绮兰采纳,获得10
6秒前
小k完成签到,获得积分20
6秒前
LY发布了新的文献求助10
6秒前
6秒前
JamesPei应助风中的哈密瓜采纳,获得10
7秒前
无心发布了新的文献求助10
9秒前
9秒前
深情安青应助Fjun采纳,获得10
9秒前
9秒前
Lee发布了新的文献求助10
10秒前
jia发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
zhaowei完成签到,获得积分10
11秒前
12秒前
呼呼完成签到,获得积分10
12秒前
秦苏箐完成签到 ,获得积分10
12秒前
FGG发布了新的文献求助10
12秒前
13秒前
13秒前
典雅飞飞发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105