Development and Validation of a Deep Learning CT Signature to Predict Survival and Chemotherapy Benefit in Gastric Cancer

医学 列线图 危险系数 内科学 肿瘤科 队列 阶段(地层学) 比例危险模型 癌症 置信区间 生物 古生物学
作者
Yuming Jiang,Cheng Jin,Heng Yu,Jia Wu,Chuanli Chen,Qingyu Yuan,Weicai Huang,Yanfeng Hu,Yikai Xu,Zhiwei Zhou,George A. Fisher,Guoxin Li,Ruijiang Li
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:274 (6): e1153-e1161 被引量:75
标识
DOI:10.1097/sla.0000000000003778
摘要

Objective: We aimed to develop a deep learning-based signature to predict prognosis and benefit from adjuvant chemotherapy using preoperative computed tomography (CT) images. Background: Current staging methods do not accurately predict the risk of disease relapse for patients with gastric cancer. Methods: We proposed a novel deep neural network (S-net) to construct a CT signature for predicting disease-free survival (DFS) and overall survival in a training cohort of 457 patients, and independently tested it in an external validation cohort of 1158 patients. An integrated nomogram was constructed to demonstrate the added value of the imaging signature to established clinicopathologic factors for individualized survival prediction. Prediction performance was assessed with respect to discrimination, calibration, and clinical usefulness. Results: The DeLIS was associated with DFS and overall survival in the overall validation cohort and among subgroups defined by clinicopathologic variables, and remained an independent prognostic factor in multivariable analysis ( P < 0.001). Integrating the imaging signature and clinicopathologic factors improved prediction performance, with C-indices: 0.792–0.802 versus 0.719–0.724, and net reclassification improvement 10.1%–28.3%. Adjuvant chemotherapy was associated with improved DFS in stage II patients with high-DeLIS [hazard ratio = 0.362 (95% confidence interval 0.149–0.882)] and stage III patients with high- and intermediate-DeLIS [hazard ratio = 0.611 (0.442–0.843); 0.633 (0.433–0.925)]. On the other hand, adjuvant chemotherapy did not affect survival for patients with low-DeLIS, suggesting a predictive effect ( P interaction = 0.048, 0.016 for DFS in stage II and III disease). Conclusions: The proposed imaging signature improved prognostic prediction and could help identify patients most likely to benefit from adjuvant chemotherapy in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的沛珊完成签到 ,获得积分10
刚刚
刘兆亮发布了新的文献求助10
1秒前
科研通AI6应助饱满的冬卉采纳,获得10
1秒前
小Z完成签到,获得积分10
1秒前
bierbia完成签到 ,获得积分10
2秒前
冷静的手套完成签到 ,获得积分10
3秒前
月亮完成签到 ,获得积分10
3秒前
爆米花应助LSF采纳,获得10
3秒前
heavenhorse应助执着的纲采纳,获得30
4秒前
4秒前
思源应助欣喜的长颈鹿采纳,获得10
4秒前
5秒前
5秒前
6秒前
7秒前
安氏月月发布了新的文献求助10
9秒前
在水一方应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
xiaozeng发布了新的文献求助10
10秒前
打打应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458439
求助须知:如何正确求助?哪些是违规求助? 4564491
关于积分的说明 14295328
捐赠科研通 4489396
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466