Development and Validation of a Deep Learning CT Signature to Predict Survival and Chemotherapy Benefit in Gastric Cancer

医学 列线图 危险系数 内科学 肿瘤科 队列 阶段(地层学) 比例危险模型 癌症 置信区间 生物 古生物学
作者
Yuming Jiang,Cheng Jin,Heng Yu,Jia Wu,Chuanli Chen,Qingyu Yuan,Weicai Huang,Yanfeng Hu,Yikai Xu,Zhiwei Zhou,George A. Fisher,Guoxin Li,Ruijiang Li
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:274 (6): e1153-e1161 被引量:75
标识
DOI:10.1097/sla.0000000000003778
摘要

Objective: We aimed to develop a deep learning-based signature to predict prognosis and benefit from adjuvant chemotherapy using preoperative computed tomography (CT) images. Background: Current staging methods do not accurately predict the risk of disease relapse for patients with gastric cancer. Methods: We proposed a novel deep neural network (S-net) to construct a CT signature for predicting disease-free survival (DFS) and overall survival in a training cohort of 457 patients, and independently tested it in an external validation cohort of 1158 patients. An integrated nomogram was constructed to demonstrate the added value of the imaging signature to established clinicopathologic factors for individualized survival prediction. Prediction performance was assessed with respect to discrimination, calibration, and clinical usefulness. Results: The DeLIS was associated with DFS and overall survival in the overall validation cohort and among subgroups defined by clinicopathologic variables, and remained an independent prognostic factor in multivariable analysis ( P < 0.001). Integrating the imaging signature and clinicopathologic factors improved prediction performance, with C-indices: 0.792–0.802 versus 0.719–0.724, and net reclassification improvement 10.1%–28.3%. Adjuvant chemotherapy was associated with improved DFS in stage II patients with high-DeLIS [hazard ratio = 0.362 (95% confidence interval 0.149–0.882)] and stage III patients with high- and intermediate-DeLIS [hazard ratio = 0.611 (0.442–0.843); 0.633 (0.433–0.925)]. On the other hand, adjuvant chemotherapy did not affect survival for patients with low-DeLIS, suggesting a predictive effect ( P interaction = 0.048, 0.016 for DFS in stage II and III disease). Conclusions: The proposed imaging signature improved prognostic prediction and could help identify patients most likely to benefit from adjuvant chemotherapy in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
UP完成签到,获得积分10
1秒前
2秒前
CAOHOU应助井小浩采纳,获得10
2秒前
科研小扒菜完成签到,获得积分10
2秒前
qwertt完成签到,获得积分10
3秒前
3秒前
4秒前
Jeremy King发布了新的文献求助10
4秒前
4秒前
haoqisheng发布了新的文献求助10
4秒前
虚心的仙人掌完成签到,获得积分0
5秒前
5秒前
球球应助woodheart采纳,获得10
6秒前
魔幻灯泡完成签到,获得积分10
6秒前
爆米花应助盛夏采纳,获得10
6秒前
Crazy_Runner发布了新的文献求助10
6秒前
7秒前
上官若男应助079采纳,获得10
7秒前
7秒前
头发同学完成签到,获得积分10
7秒前
NexusExplorer应助沈oo采纳,获得10
8秒前
阿柴_Htao完成签到 ,获得积分10
8秒前
9秒前
9秒前
赵雪完成签到,获得积分10
9秒前
LJ程励完成签到 ,获得积分10
9秒前
Chenjunxian完成签到,获得积分10
10秒前
10秒前
pipa_lemon完成签到,获得积分10
10秒前
小白鞋完成签到 ,获得积分10
10秒前
10秒前
情怀应助活泼的幻丝采纳,获得10
10秒前
11秒前
852应助故事采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
缪甲烷发布了新的文献求助10
12秒前
CodeCraft应助阿童木采纳,获得20
12秒前
gs发布了新的文献求助10
12秒前
张喻235532发布了新的文献求助20
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406