Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:111
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
WHW完成签到,获得积分10
2秒前
2秒前
打打应助buhuidanhuixue采纳,获得10
2秒前
小欢发布了新的文献求助20
3秒前
所所应助晓晓来了采纳,获得10
3秒前
liushirui发布了新的文献求助10
4秒前
完美世界应助yan采纳,获得80
4秒前
xiancdc完成签到,获得积分10
5秒前
爆米花应助健康的不愁采纳,获得10
5秒前
freya发布了新的文献求助10
5秒前
充电宝应助小白采纳,获得10
5秒前
研友_8WMxKn完成签到,获得积分10
5秒前
6秒前
6秒前
222666发布了新的文献求助10
7秒前
大个应助122采纳,获得10
7秒前
维洛尼亚发布了新的文献求助10
7秒前
yolo完成签到,获得积分10
7秒前
8秒前
初秋完成签到,获得积分20
8秒前
8秒前
李爱国应助知秋采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
烟花应助望山云雾采纳,获得10
9秒前
song发布了新的文献求助10
10秒前
CodeCraft应助研友_8WMxKn采纳,获得10
11秒前
铃溪完成签到,获得积分10
11秒前
11秒前
minbio完成签到,获得积分20
11秒前
AsRNA完成签到,获得积分10
12秒前
董媛媛发布了新的文献求助10
12秒前
12秒前
12秒前
如果再谨慎点完成签到 ,获得积分20
12秒前
huyu发布了新的文献求助10
12秒前
HOAN应助粥粥采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482