Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:68
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JKA23发布了新的文献求助10
刚刚
1秒前
杨丽发布了新的文献求助10
1秒前
2秒前
泰山球迷发布了新的文献求助10
2秒前
3秒前
小w爱吃锅包肉应助口香糖采纳,获得10
3秒前
4秒前
4秒前
赖同学发布了新的文献求助20
5秒前
5秒前
Z_Miaom完成签到,获得积分10
6秒前
知北完成签到,获得积分10
7秒前
7秒前
Sir.夏季风发布了新的文献求助10
8秒前
佳雯发布了新的文献求助10
8秒前
千里完成签到,获得积分10
8秒前
8秒前
JKA23完成签到,获得积分10
9秒前
2026毕业啦发布了新的文献求助10
9秒前
10秒前
10秒前
郗妫完成签到,获得积分10
10秒前
星辰大海应助Z_Miaom采纳,获得10
11秒前
11秒前
端庄诗翠发布了新的文献求助30
13秒前
13秒前
科研通AI5应助周周采纳,获得20
14秒前
14秒前
斯文败类应助ximei采纳,获得10
15秒前
16秒前
科目三应助贪玩蔡徐坤采纳,获得10
16秒前
16秒前
Lucas应助刘永红采纳,获得10
17秒前
17秒前
炼丹师应助Gyaz采纳,获得20
17秒前
17秒前
17秒前
机智绝悟完成签到,获得积分10
18秒前
无限的丹翠完成签到,获得积分10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590