亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:111
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张子捷发布了新的文献求助10
1秒前
天天快乐应助旺拽硫乃采纳,获得10
12秒前
泠玥完成签到 ,获得积分20
16秒前
17秒前
17秒前
20秒前
21秒前
ZJakariae给ZJakariae的求助进行了留言
21秒前
泠玥关注了科研通微信公众号
23秒前
木有完成签到 ,获得积分10
26秒前
炙热的夜雪完成签到 ,获得积分10
29秒前
貔貅完成签到,获得积分10
35秒前
37秒前
huahua完成签到 ,获得积分10
40秒前
Seeking完成签到,获得积分10
46秒前
49秒前
wang完成签到 ,获得积分10
51秒前
Innogen发布了新的文献求助10
55秒前
起风了完成签到 ,获得积分10
56秒前
luster完成签到 ,获得积分10
56秒前
57秒前
后山种仙草完成签到,获得积分10
1分钟前
嘿嘿应助薛雨佳采纳,获得10
1分钟前
1分钟前
1分钟前
恋晨发布了新的文献求助10
1分钟前
归去来兮发布了新的文献求助10
1分钟前
空凌完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
今后应助瘦瘦的飞秒激光采纳,获得10
1分钟前
1分钟前
龙大王完成签到 ,获得积分10
1分钟前
土豪的洋葱完成签到,获得积分10
1分钟前
1分钟前
1分钟前
G.D完成签到 ,获得积分10
1分钟前
1分钟前
小夏完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595654
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817999
捐赠科研通 4651355
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503514
关于科研通互助平台的介绍 1469754