Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:63
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助qunqing3采纳,获得10
1秒前
2秒前
winter完成签到 ,获得积分20
3秒前
彭于晏应助落后幼晴采纳,获得30
3秒前
在水一方应助lin采纳,获得10
4秒前
顺心寻菡完成签到,获得积分10
4秒前
华仔应助桂花乌龙采纳,获得30
4秒前
4秒前
好困应助妄语采纳,获得10
5秒前
5秒前
RR发布了新的文献求助10
5秒前
TAN完成签到,获得积分10
5秒前
edisondc发布了新的文献求助10
6秒前
6秒前
潇然发布了新的文献求助10
7秒前
7秒前
温婉的凝丹完成签到 ,获得积分10
7秒前
阔达的扬完成签到,获得积分10
8秒前
落桑发布了新的文献求助10
8秒前
Akim应助踏实的平露采纳,获得10
8秒前
黎黎完成签到,获得积分10
9秒前
jxc完成签到,获得积分10
9秒前
小白发布了新的文献求助10
9秒前
Jasper应助温暖幻桃采纳,获得10
10秒前
10秒前
不爱喝可乐完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
研友_VZG7GZ应助qi采纳,获得10
11秒前
Anquan发布了新的文献求助10
11秒前
hxxcyb完成签到,获得积分10
12秒前
落后幼晴完成签到,获得积分20
12秒前
善学以致用应助西扬采纳,获得20
12秒前
Ge完成签到,获得积分10
13秒前
徐矜发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180554
求助须知:如何正确求助?哪些是违规求助? 2830814
关于积分的说明 7981328
捐赠科研通 2492536
什么是DOI,文献DOI怎么找? 1329631
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954