Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:68
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萄哥布鸽完成签到,获得积分10
1秒前
2秒前
充电宝应助Ammon采纳,获得10
2秒前
zozo发布了新的文献求助10
3秒前
沉默傲芙发布了新的文献求助10
4秒前
Jasper应助少吃一口采纳,获得10
4秒前
小静静发布了新的文献求助50
4秒前
hao253完成签到,获得积分10
4秒前
Catherine完成签到,获得积分10
4秒前
柳娅茹完成签到,获得积分20
5秒前
zlovej完成签到 ,获得积分10
6秒前
z7完成签到,获得积分10
6秒前
迦佭完成签到,获得积分10
6秒前
小新同学完成签到,获得积分10
7秒前
8秒前
哭泣的海豚完成签到,获得积分10
9秒前
林好事完成签到,获得积分10
9秒前
9秒前
慕青应助llin采纳,获得10
11秒前
AVsecurity应助舒适嘉熙采纳,获得50
13秒前
13秒前
zozo完成签到,获得积分10
13秒前
13秒前
as完成签到,获得积分10
13秒前
赵赵发布了新的文献求助10
13秒前
典雅山槐发布了新的文献求助10
13秒前
lelouch完成签到,获得积分10
15秒前
15秒前
zyn完成签到 ,获得积分10
16秒前
Owen应助怕孤独的唇彩采纳,获得10
17秒前
轻风完成签到,获得积分10
19秒前
21秒前
22秒前
MMMar完成签到 ,获得积分10
22秒前
淡然依凝发布了新的文献求助10
22秒前
22秒前
我是老大应助麦子采纳,获得10
22秒前
九九完成签到 ,获得积分10
22秒前
沉静的凡完成签到,获得积分10
25秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070