Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:111
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
ada发布了新的文献求助10
刚刚
刚刚
Ava应助端庄亦巧采纳,获得10
1秒前
1秒前
xmuchem发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
6秒前
6秒前
mahehivebv111完成签到,获得积分10
7秒前
Muller发布了新的文献求助10
7秒前
8秒前
蔡万润完成签到 ,获得积分10
8秒前
天雨流芳发布了新的文献求助10
9秒前
Eifuly完成签到,获得积分10
10秒前
JamesPei应助ff不吃芹菜采纳,获得10
10秒前
小年小少发布了新的文献求助10
10秒前
Yuanyuan发布了新的文献求助10
10秒前
11秒前
打打应助严yee采纳,获得10
11秒前
12秒前
大模型应助小白兔采纳,获得10
12秒前
维克托发布了新的文献求助10
13秒前
科研牛马完成签到 ,获得积分10
13秒前
13秒前
危机的阁应助liu采纳,获得10
14秒前
蓝天发布了新的文献求助10
14秒前
ZHL完成签到,获得积分20
15秒前
15秒前
852应助小僧采纳,获得10
15秒前
Angel发布了新的文献求助10
16秒前
爱笑安露完成签到,获得积分10
18秒前
今后应助杨杨采纳,获得10
18秒前
都不好听完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
Akim应助年年采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743602
求助须知:如何正确求助?哪些是违规求助? 5414972
关于积分的说明 15348028
捐赠科研通 4884256
什么是DOI,文献DOI怎么找? 2625707
邀请新用户注册赠送积分活动 1574549
关于科研通互助平台的介绍 1531467