Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:111
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高挑的紫安完成签到 ,获得积分10
刚刚
彭于晏应助yy32323采纳,获得10
刚刚
苗一夫发布了新的文献求助10
刚刚
aayy发布了新的文献求助10
1秒前
田様应助柚子采纳,获得10
1秒前
2秒前
pu完成签到 ,获得积分10
2秒前
香蕉觅云应助yaya采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
mouxia发布了新的文献求助10
5秒前
Rocky_Qi发布了新的文献求助10
5秒前
5秒前
SSS完成签到,获得积分10
6秒前
熬夜波比应助shaco采纳,获得10
7秒前
二豆子0完成签到,获得积分10
7秒前
ZYYYY发布了新的文献求助10
8秒前
8秒前
汉堡包应助111采纳,获得10
8秒前
8秒前
pluto应助阔达犀牛采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Twonej应助一分儿采纳,获得30
10秒前
homer完成签到,获得积分0
10秒前
11秒前
冷酷静竹发布了新的文献求助10
12秒前
yy32323发布了新的文献求助10
12秒前
求助人员发布了新的文献求助10
12秒前
12秒前
AhhHuang应助jasmine0211采纳,获得10
12秒前
星辰大海应助端庄的寄凡采纳,获得10
12秒前
我是老大应助陈sir采纳,获得10
13秒前
Bingo发布了新的文献求助10
13秒前
13秒前
14秒前
orixero应助xiaofeidiao采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049