Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:111
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gavin发布了新的文献求助100
1秒前
1秒前
1秒前
1秒前
梓树发布了新的文献求助10
2秒前
汉堡发布了新的文献求助10
2秒前
所所应助lqy采纳,获得10
3秒前
4秒前
CAOHOU应助Mr.Ren采纳,获得10
5秒前
完美世界应助iamssj采纳,获得10
5秒前
念念发布了新的文献求助10
5秒前
6秒前
7秒前
laj发布了新的文献求助10
7秒前
Kittymiaoo发布了新的文献求助10
8秒前
领导范儿应助探探采纳,获得10
9秒前
10秒前
Xulun发布了新的文献求助10
10秒前
绾绾完成签到 ,获得积分10
10秒前
yang完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
时光完成签到,获得积分10
12秒前
12秒前
12秒前
合适小凝完成签到,获得积分10
12秒前
长情的问枫关注了科研通微信公众号
13秒前
Ideal应助guozizi采纳,获得50
13秒前
14秒前
dy完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
端庄的夜蕾完成签到,获得积分10
15秒前
时光发布了新的文献求助10
16秒前
zzz完成签到,获得积分10
16秒前
迪克大完成签到,获得积分10
16秒前
16秒前
0919完成签到 ,获得积分10
16秒前
无花果应助laj采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965