芳香
化学
风味
成熟
采后
食品科学
水解
有机化学
植物
生物
作者
Xiao Chen,Siew Young Quek
标识
DOI:10.1080/10408398.2022.2064422
摘要
Fruit aroma makes an initial flavor impression and largely determines the consumer preference and acceptance of fruit products. Free volatile organic compounds (FVOCs) directly make up the characteristic aromas of fruits. While glycosidically bound volatile compounds (GBVs) can be hydrolyzed during fruit ripening, postharvest storage, and processing, releasing the attached aglycones as free volatiles that could alter the overall aroma attributes of fruits. GBVs typically exhibit significantly higher concentrations than their free counterparts in fruits such as grapes, cherries, kiwifruits, tomatoes, and tamarillos. This review highlights the biosynthesis of FVOCs and GBVs in fruit and illustrates their biological transformations for various functional purposes such as detoxification, aroma enhancement, plant defense, and pollinator attraction. Practical applications for regulating the levels of aroma compounds emitted or accumulated in fruit are also reviewed, emphasizing the metabolic engineering of free volatile metabolites and hydrolytic technologies on aroma glycosides. Generally, enzymatic hydrolysis using AR2000 is a common strategy to enhance the sensory attributes of fruit juices/wines, while acidic hydrolysis induces the oxidation and rearrangement of aglycones, generating artifacts with off-aromas. This review associates the occurrence of free and glycosidic bound volatiles in fruit and addresses their importance in fruit flavor enhancement and industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI