Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA

均方误差 平均绝对百分比误差 自适应神经模糊推理系统 氮氧化物 相关系数 统计 决定系数 近似误差 环境科学 数学 模糊逻辑 计算机科学 模糊控制系统 化学 燃烧 人工智能 有机化学
作者
Mahmut Dirik
出处
期刊:Fuel [Elsevier]
卷期号:321: 124037-124037 被引量:13
标识
DOI:10.1016/j.fuel.2022.124037
摘要

Combined cycle power plants, which combine gas and steam turbines, have negative impacts on surrounding populations and structures. Control of NOx emissions is an important issue for these gas-fired power plants. Accurate estimation of NOx emissions is critical for developing incinerators and reducing the environmental impact of existing plants. The objective of this study is to model ANFISGA and estimate NOx emissions from a natural gas-fired combined cycle power plant using emission monitoring system (PEMS) data. First, Adaptive Neuro Fuzzy Inference System (ANFIS) models were developed using fuzzy C-Means (FCM). Then, the parameters were optimized using a genetic algorithm (GA) to reduce the error. The proposed ANFISGA system was created, trained, and tested with PEMS datasets. The developed models were compared using several statistical performance criteria, including correlation coefficient (R2), mean squared error (MSE), error mean (EM), root mean square error (RMSE), standard deviation of error (STD), and mean absolute percentage error (MAPE). The obtained results show that the coefficient of determination varies between 0.79933 and 0.90363 for the data separated into test and training data with different rates. The minimum values of the criteria MSE, RMSE, EM, STD, and MAPE were found to be 24.8379, 4.9838, 3.4625e-05, 4.9839, and 5.1660, respectively, for the training data. The minimum values of these criteria for the test data were 26.5961, 5.1571, 0.065696, 5.157, and 5.3695, respectively. The collected results show that the proposed ANFISGA models have high potential for NOx prediction. Thus, the results show that GA has a great impact on the performance of ANFIS training and significantly improves the predictive accuracy of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Hoooo...采纳,获得10
刚刚
1秒前
季宇完成签到,获得积分10
1秒前
fifteen发布了新的文献求助10
2秒前
就当野人算了完成签到,获得积分10
4秒前
李光发布了新的文献求助10
4秒前
4秒前
max完成签到 ,获得积分10
5秒前
MY发布了新的文献求助10
5秒前
zho应助开心易真采纳,获得10
5秒前
orixero应助天才幸运鱼采纳,获得10
5秒前
6秒前
一丁雨发布了新的文献求助10
6秒前
雪凝清霜完成签到,获得积分10
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
云渺完成签到,获得积分10
10秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
12秒前
云渺发布了新的文献求助10
12秒前
深情安青应助lourahan采纳,获得10
13秒前
李健的小迷弟应助lqq采纳,获得30
13秒前
852应助芓菡采纳,获得10
15秒前
15秒前
17秒前
桐桐应助无辜箴采纳,获得10
18秒前
丘比特应助XIAXIAXIA采纳,获得10
18秒前
19秒前
20秒前
godsence发布了新的文献求助50
20秒前
21秒前
拓跋涵易发布了新的文献求助10
22秒前
fifteen发布了新的文献求助10
22秒前
JZ1640发布了新的文献求助10
22秒前
qmx发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150268
求助须知:如何正确求助?哪些是违规求助? 2801406
关于积分的说明 7844576
捐赠科研通 2458893
什么是DOI,文献DOI怎么找? 1308793
科研通“疑难数据库(出版商)”最低求助积分说明 628566
版权声明 601721