Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA

均方误差 平均绝对百分比误差 自适应神经模糊推理系统 氮氧化物 相关系数 统计 决定系数 近似误差 环境科学 数学 模糊逻辑 计算机科学 模糊控制系统 化学 燃烧 人工智能 有机化学
作者
Mahmut Dirik
出处
期刊:Fuel [Elsevier]
卷期号:321: 124037-124037 被引量:13
标识
DOI:10.1016/j.fuel.2022.124037
摘要

Combined cycle power plants, which combine gas and steam turbines, have negative impacts on surrounding populations and structures. Control of NOx emissions is an important issue for these gas-fired power plants. Accurate estimation of NOx emissions is critical for developing incinerators and reducing the environmental impact of existing plants. The objective of this study is to model ANFISGA and estimate NOx emissions from a natural gas-fired combined cycle power plant using emission monitoring system (PEMS) data. First, Adaptive Neuro Fuzzy Inference System (ANFIS) models were developed using fuzzy C-Means (FCM). Then, the parameters were optimized using a genetic algorithm (GA) to reduce the error. The proposed ANFISGA system was created, trained, and tested with PEMS datasets. The developed models were compared using several statistical performance criteria, including correlation coefficient (R2), mean squared error (MSE), error mean (EM), root mean square error (RMSE), standard deviation of error (STD), and mean absolute percentage error (MAPE). The obtained results show that the coefficient of determination varies between 0.79933 and 0.90363 for the data separated into test and training data with different rates. The minimum values of the criteria MSE, RMSE, EM, STD, and MAPE were found to be 24.8379, 4.9838, 3.4625e-05, 4.9839, and 5.1660, respectively, for the training data. The minimum values of these criteria for the test data were 26.5961, 5.1571, 0.065696, 5.157, and 5.3695, respectively. The collected results show that the proposed ANFISGA models have high potential for NOx prediction. Thus, the results show that GA has a great impact on the performance of ANFIS training and significantly improves the predictive accuracy of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助幽默尔蓝采纳,获得30
刚刚
香蕉诗蕊应助SamYang采纳,获得10
2秒前
在水一方应助典雅的俊驰采纳,获得10
3秒前
CKX完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助王子松采纳,获得10
3秒前
领导范儿应助Dr采纳,获得10
4秒前
的地方法规完成签到,获得积分10
4秒前
4秒前
MUWENYING发布了新的文献求助10
4秒前
5秒前
5秒前
123发布了新的文献求助10
7秒前
8秒前
8秒前
孙嘉畯发布了新的文献求助10
8秒前
英俊的铭应助yi417采纳,获得10
9秒前
dfghjkl发布了新的文献求助10
10秒前
科目三应助飞翔的医学生采纳,获得10
10秒前
归尘发布了新的文献求助10
10秒前
PACEPANG发布了新的文献求助20
10秒前
11秒前
XXXXXX完成签到,获得积分10
11秒前
魈玖完成签到,获得积分10
13秒前
悠悠发布了新的文献求助10
13秒前
SamYang完成签到,获得积分10
13秒前
miaomiao发布了新的文献求助10
13秒前
学林书屋发布了新的文献求助10
13秒前
无花果应助MUWENYING采纳,获得10
15秒前
优美紫槐发布了新的文献求助10
16秒前
小郭完成签到,获得积分20
18秒前
19秒前
rr发布了新的文献求助10
19秒前
22秒前
汉堡包应助David采纳,获得30
22秒前
22秒前
spc68应助LucyLi采纳,获得10
23秒前
我是老大应助ixueyi采纳,获得10
23秒前
orixero应助ll采纳,获得10
23秒前
英俊的铭应助加减乘除采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602503
求助须知:如何正确求助?哪些是违规求助? 4687624
关于积分的说明 14850243
捐赠科研通 4684300
什么是DOI,文献DOI怎么找? 2539931
邀请新用户注册赠送积分活动 1506645
关于科研通互助平台的介绍 1471428