亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA

均方误差 平均绝对百分比误差 自适应神经模糊推理系统 氮氧化物 相关系数 统计 决定系数 近似误差 环境科学 数学 模糊逻辑 计算机科学 模糊控制系统 化学 燃烧 人工智能 有机化学
作者
Mahmut Dirik
出处
期刊:Fuel [Elsevier]
卷期号:321: 124037-124037 被引量:13
标识
DOI:10.1016/j.fuel.2022.124037
摘要

Combined cycle power plants, which combine gas and steam turbines, have negative impacts on surrounding populations and structures. Control of NOx emissions is an important issue for these gas-fired power plants. Accurate estimation of NOx emissions is critical for developing incinerators and reducing the environmental impact of existing plants. The objective of this study is to model ANFISGA and estimate NOx emissions from a natural gas-fired combined cycle power plant using emission monitoring system (PEMS) data. First, Adaptive Neuro Fuzzy Inference System (ANFIS) models were developed using fuzzy C-Means (FCM). Then, the parameters were optimized using a genetic algorithm (GA) to reduce the error. The proposed ANFISGA system was created, trained, and tested with PEMS datasets. The developed models were compared using several statistical performance criteria, including correlation coefficient (R2), mean squared error (MSE), error mean (EM), root mean square error (RMSE), standard deviation of error (STD), and mean absolute percentage error (MAPE). The obtained results show that the coefficient of determination varies between 0.79933 and 0.90363 for the data separated into test and training data with different rates. The minimum values of the criteria MSE, RMSE, EM, STD, and MAPE were found to be 24.8379, 4.9838, 3.4625e-05, 4.9839, and 5.1660, respectively, for the training data. The minimum values of these criteria for the test data were 26.5961, 5.1571, 0.065696, 5.157, and 5.3695, respectively. The collected results show that the proposed ANFISGA models have high potential for NOx prediction. Thus, the results show that GA has a great impact on the performance of ANFIS training and significantly improves the predictive accuracy of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘哈哈完成签到 ,获得积分10
5秒前
cdercder完成签到,获得积分0
9秒前
粽子完成签到,获得积分10
14秒前
Esperanza完成签到,获得积分10
18秒前
orixero应助保持科研热情采纳,获得10
22秒前
30秒前
34秒前
xingsixs完成签到 ,获得积分10
34秒前
Willow完成签到,获得积分10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
35秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
38秒前
krajicek发布了新的文献求助10
45秒前
1分钟前
1分钟前
1分钟前
华仔应助石榴汁的书采纳,获得10
1分钟前
1分钟前
krajicek发布了新的文献求助10
1分钟前
krajicek完成签到,获得积分10
1分钟前
整齐的长颈鹿给整齐的长颈鹿的求助进行了留言
1分钟前
2分钟前
Zhao0112发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Owen应助冷静新烟采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
0911wxt发布了新的文献求助10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786