亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA

均方误差 平均绝对百分比误差 自适应神经模糊推理系统 氮氧化物 相关系数 统计 决定系数 近似误差 环境科学 数学 模糊逻辑 计算机科学 模糊控制系统 化学 燃烧 人工智能 有机化学
作者
Mahmut Dirik
出处
期刊:Fuel [Elsevier]
卷期号:321: 124037-124037 被引量:13
标识
DOI:10.1016/j.fuel.2022.124037
摘要

Combined cycle power plants, which combine gas and steam turbines, have negative impacts on surrounding populations and structures. Control of NOx emissions is an important issue for these gas-fired power plants. Accurate estimation of NOx emissions is critical for developing incinerators and reducing the environmental impact of existing plants. The objective of this study is to model ANFISGA and estimate NOx emissions from a natural gas-fired combined cycle power plant using emission monitoring system (PEMS) data. First, Adaptive Neuro Fuzzy Inference System (ANFIS) models were developed using fuzzy C-Means (FCM). Then, the parameters were optimized using a genetic algorithm (GA) to reduce the error. The proposed ANFISGA system was created, trained, and tested with PEMS datasets. The developed models were compared using several statistical performance criteria, including correlation coefficient (R2), mean squared error (MSE), error mean (EM), root mean square error (RMSE), standard deviation of error (STD), and mean absolute percentage error (MAPE). The obtained results show that the coefficient of determination varies between 0.79933 and 0.90363 for the data separated into test and training data with different rates. The minimum values of the criteria MSE, RMSE, EM, STD, and MAPE were found to be 24.8379, 4.9838, 3.4625e-05, 4.9839, and 5.1660, respectively, for the training data. The minimum values of these criteria for the test data were 26.5961, 5.1571, 0.065696, 5.157, and 5.3695, respectively. The collected results show that the proposed ANFISGA models have high potential for NOx prediction. Thus, the results show that GA has a great impact on the performance of ANFIS training and significantly improves the predictive accuracy of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单发布了新的文献求助10
3秒前
luole完成签到,获得积分20
4秒前
luole关注了科研通微信公众号
13秒前
简单发布了新的文献求助10
26秒前
28秒前
量子星尘发布了新的文献求助10
35秒前
共享精神应助浪里白条采纳,获得10
46秒前
53秒前
浪里白条发布了新的文献求助10
59秒前
JOKER完成签到 ,获得积分10
1分钟前
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
cherish完成签到,获得积分10
1分钟前
1分钟前
风中沛柔完成签到,获得积分10
1分钟前
1分钟前
SSY发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小马甲应助猫duoduo采纳,获得10
2分钟前
2分钟前
moyu123发布了新的文献求助10
2分钟前
俊逸的灵雁应助简单采纳,获得10
2分钟前
vber完成签到 ,获得积分10
2分钟前
乐乐应助moyu123采纳,获得10
2分钟前
俊逸的灵雁应助简单采纳,获得10
2分钟前
2分钟前
猫duoduo发布了新的文献求助10
2分钟前
绍华发布了新的文献求助10
2分钟前
bkagyin应助kcl采纳,获得10
2分钟前
半城烟火发布了新的文献求助10
3分钟前
Wcy发布了新的文献求助10
3分钟前
3分钟前
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187