已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA

均方误差 平均绝对百分比误差 自适应神经模糊推理系统 氮氧化物 相关系数 统计 决定系数 近似误差 环境科学 数学 模糊逻辑 计算机科学 模糊控制系统 化学 燃烧 人工智能 有机化学
作者
Mahmut Dirik
出处
期刊:Fuel [Elsevier]
卷期号:321: 124037-124037 被引量:13
标识
DOI:10.1016/j.fuel.2022.124037
摘要

Combined cycle power plants, which combine gas and steam turbines, have negative impacts on surrounding populations and structures. Control of NOx emissions is an important issue for these gas-fired power plants. Accurate estimation of NOx emissions is critical for developing incinerators and reducing the environmental impact of existing plants. The objective of this study is to model ANFISGA and estimate NOx emissions from a natural gas-fired combined cycle power plant using emission monitoring system (PEMS) data. First, Adaptive Neuro Fuzzy Inference System (ANFIS) models were developed using fuzzy C-Means (FCM). Then, the parameters were optimized using a genetic algorithm (GA) to reduce the error. The proposed ANFISGA system was created, trained, and tested with PEMS datasets. The developed models were compared using several statistical performance criteria, including correlation coefficient (R2), mean squared error (MSE), error mean (EM), root mean square error (RMSE), standard deviation of error (STD), and mean absolute percentage error (MAPE). The obtained results show that the coefficient of determination varies between 0.79933 and 0.90363 for the data separated into test and training data with different rates. The minimum values of the criteria MSE, RMSE, EM, STD, and MAPE were found to be 24.8379, 4.9838, 3.4625e-05, 4.9839, and 5.1660, respectively, for the training data. The minimum values of these criteria for the test data were 26.5961, 5.1571, 0.065696, 5.157, and 5.3695, respectively. The collected results show that the proposed ANFISGA models have high potential for NOx prediction. Thus, the results show that GA has a great impact on the performance of ANFIS training and significantly improves the predictive accuracy of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在路上完成签到 ,获得积分10
刚刚
LOST完成签到 ,获得积分10
1秒前
yxh完成签到 ,获得积分10
1秒前
1秒前
动人的向松完成签到 ,获得积分10
3秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
4秒前
郜不正完成签到,获得积分10
5秒前
舒心小海豚完成签到 ,获得积分10
6秒前
6秒前
6秒前
kenti2023完成签到 ,获得积分10
7秒前
Ni发布了新的文献求助10
10秒前
hh完成签到 ,获得积分10
11秒前
CR7发布了新的文献求助10
12秒前
14秒前
15秒前
陶醉的蜜蜂完成签到 ,获得积分10
16秒前
大树完成签到 ,获得积分10
17秒前
棠真完成签到 ,获得积分0
17秒前
Ni完成签到 ,获得积分20
18秒前
U87完成签到,获得积分10
19秒前
111完成签到 ,获得积分10
19秒前
CR7完成签到,获得积分10
19秒前
ROC发布了新的文献求助10
20秒前
郑zheng完成签到 ,获得积分10
22秒前
GingerF应助科研通管家采纳,获得50
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得20
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
Owen应助牛哥采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
shanmao完成签到,获得积分10
24秒前
FashionBoy应助wise111采纳,获得10
26秒前
Sharif318完成签到,获得积分10
28秒前
爆米花应助Dragonfln采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590