Control of dislocation density maximizing precipitation strengthening effect

成核 材料科学 奥斯特瓦尔德成熟 位错 延展性(地球科学) 降水 数字密度 冶金 化学物理 纳米技术 复合材料 热力学 化学 气象学 蠕动 物理
作者
Chi Xu,Weixing Dai,Yanglan Chen,Z.X. Qi,Guo Zheng,Y.D. Cao,J.P. Zhang,Caiyun Bu,G. Chen
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:127: 133-143 被引量:57
标识
DOI:10.1016/j.jmst.2022.03.010
摘要

The strength-ductility trade-off has been the most challenging problem for structural metals for centuries. Nanoprecipitation strengthening is an ideal approach to enhance the strength without significantly sacrificing the ductility. Stable nanoprecipitates have been successfully acquired by nanostructural design, but the number density of nanoprecipitates cannot be further increased. Researchers attempted to enhance number density by introducing highly potent nucleation sites (e.g., dislocations). However, there remains controversy over the influence of dislocations on the nucleation and growth of coherent nanoprecipitates with minimized nucleation barrier. Here, Cu-rich nanoprecipitates in an HSLA steel, as a typical type of coherent nanoprecipitates, are investigated. By combining analytical calculation and experiments, we show that dislocations are harmful for the formation of large numbered Cu-rich nanoprecipitates in a certain density range. Insufficient dislocations deprive solute atoms which decrease homogenous precipitation that cannot be compensated by the increase in heterogeneous precipitation. Under such circumstance, Cu-rich nanoprecipitates have smaller number density but larger size and higher fraction of incoherent structures due to rapid Ostwald ripening. As a result, by controlling dislocation density, the yield strength is increased by 24% without obvious loss in ductility as compared with traditional solution-quench-age process. Our work would help to optimize composition and processing routes that fully exploit the nanoprecipitation strengthening effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sherry完成签到,获得积分10
1秒前
plant完成签到 ,获得积分10
1秒前
奋斗的大白菜完成签到,获得积分10
1秒前
2秒前
山雀完成签到,获得积分10
3秒前
zhoull发布了新的文献求助10
4秒前
4秒前
5秒前
西门明雪完成签到,获得积分10
7秒前
张朝程完成签到,获得积分10
8秒前
9秒前
9秒前
毒你发布了新的文献求助10
9秒前
活力书包完成签到 ,获得积分10
12秒前
紫陌发布了新的文献求助10
14秒前
要减肥香水完成签到,获得积分10
14秒前
aaa完成签到,获得积分10
15秒前
小小酥被卷了完成签到,获得积分10
17秒前
17秒前
lxl98完成签到 ,获得积分10
19秒前
纯情的天奇完成签到 ,获得积分10
21秒前
知性的水杯完成签到 ,获得积分10
22秒前
科研通AI2S应助tdtk采纳,获得10
22秒前
orangelion完成签到,获得积分10
22秒前
QiaoHL完成签到 ,获得积分10
23秒前
23秒前
GBKYWY发布了新的文献求助10
24秒前
25秒前
nan完成签到,获得积分10
25秒前
25秒前
xiang完成签到,获得积分10
26秒前
开心的太清完成签到,获得积分10
27秒前
王侯将相发布了新的文献求助10
27秒前
tian发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
激动的梦松完成签到,获得积分10
28秒前
shineshine完成签到 ,获得积分10
28秒前
QYR完成签到,获得积分10
29秒前
SYLH应助Silone采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953546
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093666
捐赠科研通 3229646
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470