Enhanced Neutral Exciton Diffusion in Monolayer WS2 by Exciton–Exciton Annihilation

激子 单层 扩散 光致发光 比克西顿 消灭 材料科学 化学物理 重组 半导体 凝聚态物理 分子物理学 化学 纳米技术 光电子学 物理 量子力学 生物化学 热力学 基因
作者
Shiekh Zia Uddin,Naoki Higashitarumizu,Hyung‐Jin Kim,Jun Yi,Xiang Zhang,D. C. Chrzan,Ali Javey
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (5): 8005-8011 被引量:13
标识
DOI:10.1021/acsnano.2c00956
摘要

Dominant recombination pathways in monolayer transition metal dichalcogenides (TMDCs) depend primarily on background carrier concentration, generation rate, and applied strain. Charged excitons formed in the presence of background carriers mainly recombine nonradiatively. Neutral excitons recombine completely radiatively at low generation rates, but experience nonradiative exciton-exciton annihilation (EEA) at high generation rates. Strain can suppress EEA, resulting in near-unity photoluminescence quantum yield (PL QY) at all exciton densities. Although exciton diffusion is the primary channel of energy transport in excitonic materials and a critical optoelectronic design consideration, the combined effects of these factors on exciton diffusion are not clearly understood. In this work, we decouple the diffusion of neutral and charged excitons with chemical counterdoping and explore the effect of strain and generation rate on exciton diffusion. According to the standard semiconductor paradigm, a shorter carrier recombination lifetime should lead to a smaller diffusion length. Surprisingly, we find that increasing generation rate shortens the exciton lifetime but increases the diffusion length in unstrained monolayers of TMDCs. When we suppress EEA by strain, both lifetime and diffusion length become independent of generation rate. During EEA one exciton nonradiatively recombines and kinetically energizes another exciton, which then diffuses fast. Our results probe concentration-dependent diffusion of pure neutral excitons by counterdoping and elucidate how strain controls exciton transport and many-body interactions in TMDC monolayers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邱燈完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
五月完成签到 ,获得积分10
2秒前
无名应助郭德久采纳,获得50
5秒前
Samuel98完成签到 ,获得积分10
6秒前
7秒前
9秒前
liaomr完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
加油少年完成签到,获得积分10
10秒前
Sean完成签到 ,获得积分10
14秒前
垃圾桶完成签到 ,获得积分10
16秒前
luoyukejing完成签到,获得积分10
18秒前
666星爷完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
24秒前
东风完成签到,获得积分10
24秒前
啦啦啦啦完成签到 ,获得积分10
27秒前
29秒前
量子星尘发布了新的文献求助10
32秒前
yk完成签到 ,获得积分10
34秒前
AiQi完成签到 ,获得积分10
34秒前
39秒前
量子星尘发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
45秒前
45秒前
liliAnh完成签到 ,获得积分10
49秒前
坐宝马吃地瓜完成签到 ,获得积分10
50秒前
FashionBoy应助科研通管家采纳,获得10
57秒前
量子星尘发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
一行白鹭上青天完成签到 ,获得积分0
1分钟前
jerry_x完成签到 ,获得积分10
1分钟前
1分钟前
英姑应助smile采纳,获得10
1分钟前
Wb完成签到,获得积分10
1分钟前
Ali完成签到,获得积分10
1分钟前
洋洋爱吃枣完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658456
求助须知:如何正确求助?哪些是违规求助? 4821768
关于积分的说明 15081508
捐赠科研通 4816942
什么是DOI,文献DOI怎么找? 2577824
邀请新用户注册赠送积分活动 1532666
关于科研通互助平台的介绍 1491364