激子
单层
扩散
光致发光
比克西顿
消灭
材料科学
化学物理
重组
半导体
凝聚态物理
分子物理学
化学
纳米技术
光电子学
物理
量子力学
生物化学
热力学
基因
作者
Shiekh Zia Uddin,Naoki Higashitarumizu,Hyung‐Jin Kim,Jun Yi,Xiang Zhang,D. C. Chrzan,Ali Javey
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-04-25
卷期号:16 (5): 8005-8011
被引量:13
标识
DOI:10.1021/acsnano.2c00956
摘要
Dominant recombination pathways in monolayer transition metal dichalcogenides (TMDCs) depend primarily on background carrier concentration, generation rate, and applied strain. Charged excitons formed in the presence of background carriers mainly recombine nonradiatively. Neutral excitons recombine completely radiatively at low generation rates, but experience nonradiative exciton-exciton annihilation (EEA) at high generation rates. Strain can suppress EEA, resulting in near-unity photoluminescence quantum yield (PL QY) at all exciton densities. Although exciton diffusion is the primary channel of energy transport in excitonic materials and a critical optoelectronic design consideration, the combined effects of these factors on exciton diffusion are not clearly understood. In this work, we decouple the diffusion of neutral and charged excitons with chemical counterdoping and explore the effect of strain and generation rate on exciton diffusion. According to the standard semiconductor paradigm, a shorter carrier recombination lifetime should lead to a smaller diffusion length. Surprisingly, we find that increasing generation rate shortens the exciton lifetime but increases the diffusion length in unstrained monolayers of TMDCs. When we suppress EEA by strain, both lifetime and diffusion length become independent of generation rate. During EEA one exciton nonradiatively recombines and kinetically energizes another exciton, which then diffuses fast. Our results probe concentration-dependent diffusion of pure neutral excitons by counterdoping and elucidate how strain controls exciton transport and many-body interactions in TMDC monolayers.
科研通智能强力驱动
Strongly Powered by AbleSci AI