Identifying novel tumor-related antigens and immune phenotypes for developing mRNA vaccines in lung adenocarcinoma

免疫系统 抗原 表型 生物 免疫学 腺癌 信使核糖核酸 肺癌 病毒学 癌症研究 基因 医学 癌症 遗传学 病理
作者
Bolun Zhou,Ruochuan Zang,Shouxin Zhang,Peng Song,Lei Liu,Fenglong Bie,Yue Peng,Guangyu Bai,Shugeng Gao
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:109: 108816-108816 被引量:4
标识
DOI:10.1016/j.intimp.2022.108816
摘要

The mRNA vaccines have been a novel strategy of immunotherapies for multiple cancers. Although several types of mRNA vaccines have been investigated and validated in some studies, their efficacy among patients with lung adenocarcinoma (LUAD) remains largely unknown. The number of tumor-associated antigens is not enough and no study focuses on stratifying the subgroup of LUAD patients suitable for vaccination. Based on the expression profiles of immune-related genes, consensus clustering was performed to identify the most appropriate phenotype for vaccination. The immune landscape of LUAD was shown via the graph learning-based dimensionality reduction analysis. We screened for five mutated and upregulated LUAD-related antigens (CCNB1, KIAA0101, PBK, OIP5 and PLEK2) that were highly correlated with immune infiltrating cells and unfavorable clinical outcomes. And three distinct immune phenotypes were identified in the TCGA and GSE72094 cohorts. Group S1 was an immunological "hot" cluster and related to a better prognosis, whereas Group S2&S3 was an immunological "cold" cluster and associated with a poorer prognosis. At last, the results revealed heterogeneity of LUAD patients in the immune landscape. We identified five potential cancer-related antigens for mRNA vaccines, and Group S2&S3 were the most suitable phenotypes for vaccination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jane完成签到 ,获得积分10
刚刚
刚刚
刚刚
kento发布了新的文献求助30
刚刚
Akim应助balzacsun采纳,获得10
1秒前
狼来了aas发布了新的文献求助10
1秒前
2秒前
didi完成签到,获得积分10
2秒前
嘻嘻发布了新的文献求助10
4秒前
冲冲冲完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
善良身影完成签到,获得积分10
7秒前
天天快乐应助郭豪琪采纳,获得10
8秒前
13679165979发布了新的文献求助10
10秒前
13679165979发布了新的文献求助10
10秒前
13679165979发布了新的文献求助10
10秒前
13679165979发布了新的文献求助10
10秒前
13679165979发布了新的文献求助10
10秒前
10秒前
Su发布了新的文献求助10
10秒前
10秒前
淡定的思松应助呆萌士晋采纳,获得10
10秒前
11秒前
12秒前
dilli完成签到 ,获得积分10
12秒前
cwy发布了新的文献求助10
14秒前
wz发布了新的文献求助10
14秒前
balzacsun发布了新的文献求助10
16秒前
JamesPei应助星星采纳,获得10
16秒前
17秒前
17秒前
laodie完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824