已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-level features fusion network-based feature learning for machinery fault diagnosis

串联(数学) 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 特征提取 卷积神经网络 特征选择 振动 卷积(计算机科学) 人工神经网络 数学 量子力学 组合数学 物理 地质学 哲学 地震学 语言学
作者
Zhuang Ye,Jianbo Yu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108900-108900 被引量:23
标识
DOI:10.1016/j.asoc.2022.108900
摘要

Bearings are one of the most critical components in rotating machinery. Since the failures of bearings will cause unexpected machine damages, it is significant to timely and accurately recognize the defects in bearings. However, due to the nonlinear and nonstationary property of vibration signals, it is still a challenging problem to implement feature extraction and fault diagnosis based on vibration signals As a representative deep neural network (DNN), convolutional neural network (CNN) has been widely used for feature learning of vibration signals for machinery fault diagnosis. Due to the hierarchical structure of CNN, multi-level features will be generated by the layer-by-layer convolutional calculation in the deep network. Thus, it is interesting to select the layer-by-layer features in a concatenation layer for multi-level features fusion. In this paper, a novel CNN, multi-level features fusion network (MLFNet) is proposed for feature learning of vibration signals. Firstly, a multi-scale convolution is developed in MLFNet, where multi-branches with different kernel sizes are utilized to extract fault-related features. Secondly, the features at different layers are coupled by a concatenation layer to preserve discriminate information. Thirdly, an adaptive weighted selection based on dynamic feature selection is proposed for multi-level feature fusion. The effectiveness of MLFNet for machinery fault diagnosis is verified on two bearing test-beds. The experimental results demonstrate that MLFNet has good performance of feature extraction on vibration signals. MLFNet obtained the recognition accuracy of 99.75% for case 1 (single condition) and case 2 (varying condition). It has a better performance on bearing fault diagnosis in comparison with these typical DNNs and the state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子李完成签到 ,获得积分10
刚刚
刚刚
zai发布了新的文献求助10
1秒前
烟花应助洁净艳一采纳,获得30
2秒前
努力的宝汁完成签到 ,获得积分10
2秒前
katrina发布了新的文献求助10
3秒前
org完成签到,获得积分10
3秒前
chaoqi发布了新的文献求助10
5秒前
英俊的铭应助东方天奇采纳,获得10
5秒前
Felix发布了新的文献求助10
7秒前
南宫雪完成签到 ,获得积分10
8秒前
9秒前
SiO2完成签到 ,获得积分10
15秒前
chaoqi完成签到,获得积分10
15秒前
幽悠梦儿完成签到 ,获得积分10
17秒前
rmrb发布了新的文献求助10
21秒前
22秒前
rmrb完成签到,获得积分10
27秒前
飞儿随缘发布了新的文献求助10
29秒前
31秒前
32秒前
yydsyyd完成签到 ,获得积分10
36秒前
Honahlee完成签到,获得积分10
36秒前
东方天奇发布了新的文献求助10
36秒前
Aikesi发布了新的文献求助10
36秒前
受伤雁荷发布了新的文献求助10
38秒前
39秒前
抹颜完成签到 ,获得积分10
40秒前
orixero应助xdm采纳,获得10
44秒前
45秒前
47秒前
哦呵呵哈哈啦啦完成签到,获得积分10
47秒前
鲤鱼绿旋发布了新的文献求助10
49秒前
wsh发布了新的文献求助10
52秒前
53秒前
英俊的铭应助htc2022采纳,获得10
54秒前
爆米花应助hha采纳,获得10
55秒前
充电宝应助AlexLam采纳,获得10
57秒前
58秒前
58秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234409
求助须知:如何正确求助?哪些是违规求助? 2880758
关于积分的说明 8216901
捐赠科研通 2548341
什么是DOI,文献DOI怎么找? 1377698
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304