Multi-level features fusion network-based feature learning for machinery fault diagnosis

串联(数学) 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 特征提取 卷积神经网络 特征选择 振动 卷积(计算机科学) 人工神经网络 数学 量子力学 组合数学 物理 地质学 哲学 地震学 语言学
作者
Zhuang Ye,Jianbo Yu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:122: 108900-108900 被引量:23
标识
DOI:10.1016/j.asoc.2022.108900
摘要

Bearings are one of the most critical components in rotating machinery. Since the failures of bearings will cause unexpected machine damages, it is significant to timely and accurately recognize the defects in bearings. However, due to the nonlinear and nonstationary property of vibration signals, it is still a challenging problem to implement feature extraction and fault diagnosis based on vibration signals As a representative deep neural network (DNN), convolutional neural network (CNN) has been widely used for feature learning of vibration signals for machinery fault diagnosis. Due to the hierarchical structure of CNN, multi-level features will be generated by the layer-by-layer convolutional calculation in the deep network. Thus, it is interesting to select the layer-by-layer features in a concatenation layer for multi-level features fusion. In this paper, a novel CNN, multi-level features fusion network (MLFNet) is proposed for feature learning of vibration signals. Firstly, a multi-scale convolution is developed in MLFNet, where multi-branches with different kernel sizes are utilized to extract fault-related features. Secondly, the features at different layers are coupled by a concatenation layer to preserve discriminate information. Thirdly, an adaptive weighted selection based on dynamic feature selection is proposed for multi-level feature fusion. The effectiveness of MLFNet for machinery fault diagnosis is verified on two bearing test-beds. The experimental results demonstrate that MLFNet has good performance of feature extraction on vibration signals. MLFNet obtained the recognition accuracy of 99.75% for case 1 (single condition) and case 2 (varying condition). It has a better performance on bearing fault diagnosis in comparison with these typical DNNs and the state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪侠发布了新的文献求助10
刚刚
1秒前
派大珊发布了新的文献求助10
2秒前
东木应助Jenkin采纳,获得30
2秒前
唠叨的安荷完成签到,获得积分10
3秒前
小f发布了新的文献求助10
4秒前
上官若男应助皮崇知采纳,获得10
4秒前
nancy93228完成签到 ,获得积分10
5秒前
10秒前
梦隐雾发布了新的文献求助20
11秒前
派大珊完成签到,获得积分20
12秒前
Ellis发布了新的文献求助20
12秒前
12秒前
盐先生完成签到 ,获得积分10
12秒前
13秒前
13秒前
CWT完成签到,获得积分10
13秒前
14秒前
思源应助文静的慕梅采纳,获得10
15秒前
小f完成签到,获得积分10
16秒前
皮崇知发布了新的文献求助10
16秒前
CWT发布了新的文献求助10
17秒前
Jia发布了新的文献求助10
17秒前
18秒前
CC完成签到,获得积分10
18秒前
19秒前
19秒前
酷波er应助12345采纳,获得10
19秒前
叶山柳完成签到,获得积分20
22秒前
22秒前
Jia关闭了Jia文献求助
22秒前
羊羔蓉发布了新的文献求助10
22秒前
欧阳正义发布了新的文献求助10
25秒前
Orange应助滑腻腻的小鱼采纳,获得10
25秒前
传奇3应助123采纳,获得10
26秒前
zhanglongquan完成签到,获得积分20
27秒前
keira发布了新的文献求助30
27秒前
27秒前
28秒前
aaaaaa发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432