Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation

人工智能 计算机科学 姿势 单眼 闭塞 对象(语法) 三维姿态估计 计算机视觉 目标检测 模式识别(心理学) 医学 外科
作者
Gu Wang,Fabian Manhardt,Xingyu Liu,Xiangyang Ji,Federico Tombari
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (3): 1788-1803 被引量:35
标识
DOI:10.1109/tpami.2021.3136301
摘要

6D object pose estimation is a fundamental yet challenging problem in computer vision. Convolutional Neural Networks (CNNs) have recently proven to be capable of predicting reliable 6D pose estimates even under monocular settings. Nonetheless, CNNs are identified as being extremely data-driven, and acquiring adequate annotations is oftentimes very time-consuming and labor intensive. To overcome this limitation, we propose a novel monocular 6D pose estimation approach by means of self-supervised learning, removing the need for real annotations. After training our proposed network fully supervised with synthetic RGB data, we leverage current trends in noisy student training and differentiable rendering to further self-supervise the model on these unsupervised real RGB(-D) samples, seeking for a visually and geometrically optimal alignment. Moreover, employing both visible and amodal mask information, our self-supervision becomes very robust towards challenging scenarios such as occlusion. Extensive evaluations demonstrate that our proposed self-supervision outperforms all other methods relying on synthetic data or employing elaborate techniques from the domain adaptation realm. Noteworthy, our self-supervised approach consistently improves over its synthetically trained baseline and often almost closes the gap towards its fully supervised counterpart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸭鸭要学习鸭完成签到,获得积分10
1秒前
hao完成签到,获得积分10
1秒前
烤地瓜要吃甜完成签到,获得积分10
1秒前
1秒前
管靖易完成签到 ,获得积分10
1秒前
2秒前
酷炫的皮带完成签到,获得积分10
2秒前
qq小兵发布了新的文献求助10
2秒前
2秒前
3秒前
V入门完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
finger发布了新的文献求助10
5秒前
5秒前
桐夏发布了新的文献求助10
5秒前
繁星与北斗完成签到,获得积分10
5秒前
man完成签到,获得积分10
6秒前
WL发布了新的文献求助10
6秒前
dxh完成签到 ,获得积分10
6秒前
兴奋书雪发布了新的文献求助10
6秒前
honey完成签到,获得积分10
7秒前
zq1992nl完成签到,获得积分10
7秒前
给我好好读书完成签到,获得积分10
7秒前
Sky完成签到,获得积分10
7秒前
是我呀小夏完成签到 ,获得积分10
7秒前
人生何处不青山完成签到 ,获得积分10
8秒前
muxiangrong应助liuqi采纳,获得10
8秒前
星星发布了新的文献求助10
8秒前
科研通AI5应助liuqi采纳,获得10
8秒前
星辰大海应助liuqi采纳,获得10
8秒前
8秒前
ziyiziyi发布了新的文献求助10
8秒前
flow完成签到,获得积分10
8秒前
ariaooo完成签到,获得积分10
8秒前
SAINT完成签到 ,获得积分10
8秒前
ZWE发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539491
求助须知:如何正确求助?哪些是违规求助? 3117036
关于积分的说明 9328937
捐赠科研通 2814931
什么是DOI,文献DOI怎么找? 1547311
邀请新用户注册赠送积分活动 720865
科研通“疑难数据库(出版商)”最低求助积分说明 712333