A meta-analysis of retirement adjustment predictors

心理学 健康与退休研究 人口 荟萃分析 身体健康 实证研究 婚姻状况 价值(数学) 社会心理学 老年学 人口学 心理健康 医学 精神科 认识论 机器学习 哲学 计算机科学 内科学 社会学
作者
Crystal J. La Rue,Catherine Haslam,Niklas K. Steffens
出处
期刊:Journal of Vocational Behavior [Elsevier BV]
卷期号:136: 103723-103723 被引量:13
标识
DOI:10.1016/j.jvb.2022.103723
摘要

While most people experience a positive transition to retirement, as many as one third of the population find the transition challenging. Previous research has identified a number of factors that predict adjustment outcomes – with finances, physical health, marital relationship, wider social participation, and exit conditions identified as being particularly key. This study aimed to examine their relative contribution to retirement adjustment by assessing the magnitude of the associations between each key predictor category and retirement adjustment outcomes, as well as to examine potential important moderating factors. A three-level meta-analysis (based on 915 effect sizes, k = 139, N = 78,632) revealed that social participation had the strongest positive association with adjustment ( r = .23), followed by physical health ( r = .22), marital relationship ( r = .18), finances ( r = .17) and exit conditions ( r = .15), respectively. Additional analyses revealed substantial variation within each category (with effect sizes ranging from r = −.03 to r = .43), suggesting that there is value in future research and theory to recognise substantive theoretical and empirical differences in defining retirement predictors. Less physical health symptoms and ease of maintaining social relationships were identified as the most important subfactors for successful adjustment. We discuss theoretical and practical implications of these findings in facilitating retirement adjustment. • We examined five established predictors of retirement adjustment. • Predictors differed in their association with adjustment. • Social participation and health had the strongest associations with adjustment. • We examined subfactors due to substantial variation within each predictor. • Health symptoms and maintaining social ties were the most important subfactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助刀剑采纳,获得10
1秒前
淡淡猕猴桃应助大力采纳,获得100
1秒前
舍妤发布了新的文献求助10
2秒前
我是牛马发布了新的文献求助10
2秒前
3秒前
3秒前
小黄鱼儿应助fumingliang采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
vivi发布了新的文献求助10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
max应助科研通管家采纳,获得50
6秒前
希望天下0贩的0应助acc采纳,获得10
6秒前
7秒前
Shirley完成签到 ,获得积分10
7秒前
7秒前
郭郭完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
端庄代荷完成签到 ,获得积分10
12秒前
12秒前
acc发布了新的文献求助10
13秒前
慕青应助小台采纳,获得10
14秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712069
求助须知:如何正确求助?哪些是违规求助? 3260287
关于积分的说明 9913349
捐赠科研通 2973619
什么是DOI,文献DOI怎么找? 1630714
邀请新用户注册赠送积分活动 773553
科研通“疑难数据库(出版商)”最低求助积分说明 744295