Optimized Reward Function Based Deep Reinforcement Learning Approach for Object Detection Applications

强化学习 人工智能 计算机科学 人工神经网络 帕斯卡(单位) 机器学习 最小边界框 跳跃式监视 目标检测 对象(语法) 深度学习 模式识别(心理学) 图像(数学) 程序设计语言
作者
Ziya Tan,Mehmet Karaköse
标识
DOI:10.1109/dasa54658.2022.9764979
摘要

Reinforcement learning is considered a powerful artificial intelligence method that can be used to teach machines through interaction with the environment and learning from their mistakes. More and more applications are coming to the fore where Reinforcement learning has been newly and successfully implemented. It is frequently used especially in the game industry and robotics. In this article, a deep reinforcement learning approach, which uses our own developed neural network, is presented for object detection on the PASCAL Voc2012 dataset. Our approach is by moving a bounding box step-by-step towards the goal in order to fully frame the object in the picture. The created neural network consists of a 5-layer structure. In addition, it is aimed to maximize the mAP value by optimizing the reward function. The right choice in the reward policy will certainly affect the outcome and will play an important role in the training of the agent. Thanks to the optimized reward function, ground truth and the bounding box intersect at the highest rate, contributing positively to the result. As a result of the training that lasted for approximately 36 hours, the test results of 6 randomly selected classes were compared with the results of previous similar studies. Within the scope of this article, some artificial neural networks and basic studies in the literature using the Reinforcement learning approach for object detection are examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longlong完成签到,获得积分10
刚刚
香蕉觅云应助qian采纳,获得10
1秒前
TWT完成签到,获得积分10
2秒前
4秒前
4秒前
5秒前
vivian完成签到 ,获得积分10
6秒前
完犊子发布了新的文献求助10
8秒前
加油完成签到 ,获得积分10
8秒前
少吃一口完成签到,获得积分10
9秒前
WYZ完成签到,获得积分10
9秒前
bliyaa完成签到,获得积分10
9秒前
10秒前
无心的天真完成签到 ,获得积分10
12秒前
buqi应助完犊子采纳,获得10
13秒前
Linsey应助完犊子采纳,获得10
13秒前
二毛完成签到,获得积分0
13秒前
tian发布了新的文献求助10
15秒前
15秒前
16秒前
HuLL完成签到 ,获得积分10
17秒前
小蘑菇应助一个小胖子采纳,获得10
17秒前
tengyve完成签到,获得积分10
18秒前
琅琊为刃发布了新的文献求助10
18秒前
exosome完成签到,获得积分10
23秒前
孙孙孙啊完成签到,获得积分10
23秒前
小白菜完成签到 ,获得积分10
24秒前
李健的粉丝团团长应助li采纳,获得10
25秒前
无私的朝雪完成签到 ,获得积分10
26秒前
笨笨梦松完成签到,获得积分10
27秒前
CoCoco完成签到 ,获得积分10
27秒前
庭中踏雪来完成签到 ,获得积分10
28秒前
完犊子完成签到,获得积分20
28秒前
28秒前
Orange应助科研通管家采纳,获得10
29秒前
小林子完成签到,获得积分10
29秒前
小李找文献完成签到,获得积分10
31秒前
李雪松完成签到 ,获得积分10
31秒前
Chnimike完成签到 ,获得积分10
32秒前
mm完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953529
求助须知:如何正确求助?哪些是违规求助? 3498988
关于积分的说明 11093633
捐赠科研通 3229626
什么是DOI,文献DOI怎么找? 1785674
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470