Optimized Reward Function Based Deep Reinforcement Learning Approach for Object Detection Applications

强化学习 人工智能 计算机科学 人工神经网络 帕斯卡(单位) 机器学习 最小边界框 跳跃式监视 目标检测 对象(语法) 深度学习 模式识别(心理学) 图像(数学) 程序设计语言
作者
Ziya Tan,Mehmet Karaköse
标识
DOI:10.1109/dasa54658.2022.9764979
摘要

Reinforcement learning is considered a powerful artificial intelligence method that can be used to teach machines through interaction with the environment and learning from their mistakes. More and more applications are coming to the fore where Reinforcement learning has been newly and successfully implemented. It is frequently used especially in the game industry and robotics. In this article, a deep reinforcement learning approach, which uses our own developed neural network, is presented for object detection on the PASCAL Voc2012 dataset. Our approach is by moving a bounding box step-by-step towards the goal in order to fully frame the object in the picture. The created neural network consists of a 5-layer structure. In addition, it is aimed to maximize the mAP value by optimizing the reward function. The right choice in the reward policy will certainly affect the outcome and will play an important role in the training of the agent. Thanks to the optimized reward function, ground truth and the bounding box intersect at the highest rate, contributing positively to the result. As a result of the training that lasted for approximately 36 hours, the test results of 6 randomly selected classes were compared with the results of previous similar studies. Within the scope of this article, some artificial neural networks and basic studies in the literature using the Reinforcement learning approach for object detection are examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛慢慢发布了新的文献求助10
刚刚
刚刚
今天不学习明天变垃圾完成签到,获得积分10
刚刚
1秒前
1秒前
布布完成签到,获得积分10
2秒前
一独白发布了新的文献求助10
2秒前
周周完成签到 ,获得积分10
2秒前
淡然完成签到,获得积分10
3秒前
明理小土豆完成签到,获得积分10
3秒前
刘国建郭菱香完成签到,获得积分10
3秒前
嘤嘤嘤完成签到,获得积分10
3秒前
九川应助粱自中采纳,获得10
3秒前
无辜之卉完成签到,获得积分10
4秒前
无花果应助Island采纳,获得10
4秒前
4秒前
SHDeathlock发布了新的文献求助200
5秒前
Owen应助醒醒采纳,获得10
5秒前
无心的代桃完成签到,获得积分10
6秒前
追寻代真完成签到,获得积分10
6秒前
晓兴兴完成签到,获得积分10
6秒前
leon发布了新的文献求助10
7秒前
洽洽瓜子shine完成签到,获得积分10
7秒前
简单的大白菜真实的钥匙完成签到,获得积分10
8秒前
9秒前
一独白完成签到,获得积分10
10秒前
在水一方应助坚强的樱采纳,获得10
10秒前
慕青应助尼亚吉拉采纳,获得10
11秒前
快乐小白菜应助甜酱采纳,获得10
11秒前
11秒前
qq应助毛慢慢采纳,获得10
12秒前
12秒前
科研通AI5应助吴岳采纳,获得10
12秒前
天天快乐应助ufuon采纳,获得10
13秒前
科研通AI5应助一独白采纳,获得10
14秒前
hearts_j完成签到,获得积分10
14秒前
FashionBoy应助yasan采纳,获得10
14秒前
安琪琪完成签到,获得积分10
15秒前
15秒前
端庄千琴完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762