FedOComp: Two-Timescale Online Gradient Compression for Over-the-Air Federated Learning

计算机科学 趋同(经济学) 编配 数据压缩 收敛速度 压缩(物理) 分布式计算 数据压缩比 软件部署 实时计算 人工智能 计算机网络 图像压缩 频道(广播) 艺术 视觉艺术 图像处理 复合材料 经济 经济增长 材料科学 图像(数学) 音乐剧 操作系统
作者
Ye Xue,Liqun Su,Vincent K. N. Lau
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (19): 19330-19345 被引量:15
标识
DOI:10.1109/jiot.2022.3165268
摘要

Federated learning (FL) is a machine learning framework, where multiple distributed edge Internet of Things (IoT) devices collaboratively train a model under the orchestration of a central server while keeping the training data distributed on the IoT devices. FL can mitigate the privacy risks and costs from data collection in traditional centralized machine learning. However, the deployment of standard FL is hindered by the expense of the communication of the gradients from the devices to the server. Hence, many gradient compression methods have been proposed to reduce the communication cost. However, the existing methods ignore the structural correlations of the gradients and, therefore, lead to a large compression loss which will decelerate the training convergence. Moreover, many of the existing compression schemes do not enable over-the-air aggregation and, hence, require huge communication resources. In this work, we propose a gradient compression scheme, named FedOComp, which leverages the correlations of the stochastic gradients in FL systems for efficient compression of the high-dimension gradients with over-the-air aggregation. The proposed design can achieve a smaller deceleration of the training convergence compared to other gradient compression methods since the compression kernel exploits the structural correlations of the gradients. It also directly enables over-the-air aggregation to save communication resources. The derived convergence analysis and simulation results further illustrate that under the same power cost, the proposed scheme has a much faster convergence rate and higher test accuracy compared to existing baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助英俊白莲采纳,获得30
1秒前
2秒前
浮游应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
NKTreg应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
tinghai86应助科研通管家采纳,获得10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
鸣笛应助科研通管家采纳,获得20
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得30
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
不想干活应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
NKTreg应助科研通管家采纳,获得10
5秒前
松数发布了新的文献求助10
5秒前
研友_8ov14Z发布了新的文献求助10
5秒前
scoot发布了新的文献求助10
5秒前
6秒前
xslj完成签到,获得积分10
7秒前
桐桐应助zdy采纳,获得10
7秒前
淡淡的冰颜完成签到,获得积分10
8秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547326
求助须知:如何正确求助?哪些是违规求助? 3978277
关于积分的说明 12318591
捐赠科研通 3646879
什么是DOI,文献DOI怎么找? 2008395
邀请新用户注册赠送积分活动 1043972
科研通“疑难数据库(出版商)”最低求助积分说明 932554