A Layered Spiking Neural System for Classification Problems.

MNIST数据库 人工智能 计算机科学 人工神经网络 尖峰神经网络 水准点(测量) 机器学习 模式识别(心理学)
作者
Gexiang Zhang,Xihai Zhang,Haina Rong,Prithwineel Paul,Ming Zhu,Ferrante Neri,Yew-Soon Ong
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:: 2250023-2250023
标识
DOI:10.1142/s012906572250023x
摘要

Biological brains have a natural capacity for resolving certain classification tasks. Studies on biologically plausible spiking neurons, architectures and mechanisms of artificial neural systems that closely match biological observations while giving high classification performance are gaining momentum. Spiking neural P systems (SN P systems) are a class of membrane computing models and third-generation neural networks that are based on the behavior of biological neural cells and have been used in various engineering applications. Furthermore, SN P systems are characterized by a highly flexible structure that enables the design of a machine learning algorithm by mimicking the structure and behavior of biological cells without the over-simplification present in neural networks. Based on this aspect, this paper proposes a novel type of SN P system, namely, layered SN P system (LSN P system), to solve classification problems by supervised learning. The proposed LSN P system consists of a multi-layer network containing multiple weighted fuzzy SN P systems with adaptive weight adjustment rules. The proposed system employs specific ascending dimension techniques and a selection method of output neurons for classification problems. The experimental results obtained using benchmark datasets from the UCI machine learning repository and MNIST dataset demonstrated the feasibility and effectiveness of the proposed LSN P system. More importantly, the proposed LSN P system presents the first SN P system that demonstrates sufficient performance for use in addressing real-world classification problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
汉堡包应助君兰采纳,获得10
2秒前
修狗大王完成签到 ,获得积分10
3秒前
3秒前
Daixi_Chen发布了新的文献求助10
3秒前
俏皮的邴完成签到 ,获得积分10
4秒前
大个应助JAY采纳,获得10
4秒前
orixero应助Allein采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Jackie发布了新的文献求助10
6秒前
酷酷的万恶完成签到 ,获得积分10
8秒前
852给李昕123的求助进行了留言
8秒前
大模型应助sian采纳,获得10
10秒前
10秒前
科研通AI6应助666888采纳,获得10
11秒前
11秒前
朱祝祝完成签到,获得积分10
12秒前
avalanche应助盐焗鱼丸采纳,获得50
13秒前
失眠的访枫完成签到 ,获得积分10
13秒前
ZR完成签到,获得积分10
14秒前
17秒前
17秒前
lulumomoxixi发布了新的文献求助10
19秒前
20秒前
辞旧完成签到 ,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
酸酸完成签到,获得积分10
23秒前
24秒前
SciGPT应助6a采纳,获得10
24秒前
优秀小笼包完成签到,获得积分10
24秒前
橙子发布了新的文献求助10
26秒前
Solkatt完成签到 ,获得积分10
27秒前
李健应助空中马铃薯采纳,获得10
27秒前
28秒前
20770007209关注了科研通微信公众号
29秒前
香菜发布了新的文献求助10
29秒前
充电宝应助鹅鹅采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370