Towards Efficient Simulations of Non-Equilibrium Chemistry in Hypersonic Flows: A Physics-Informed Neural Network Framework

计算机科学 统计物理学 加速 维数之咒 应用数学 高超音速 计算流体力学 物理 算法 数学优化 数学 机械 机器学习 操作系统
作者
Ivan Zanardi,Simone Venturi,Marco Panesi
标识
DOI:10.2514/6.2022-1639
摘要

Simulating non-equilibrium hypersonic flows by relying on high fidelity state-to-state kinetics is computationally intensive. The cost is determined by the high computational load associated with the solution of underlying master equations, which predict the evolution of the species mass fractions and the rovibrational distribution functions by considering energy exchange and dissociation processes. In this work, a machine learning (ML)-based approach is developed for accelerating numerical simulations of such computationally expensive flows. A physics-informed DeepONet (PI-DeepONet), i.e. a deep operator network (DeepONet) trained in the physics-informed (PI) fashion, is constructed to learn the solution operator of coarse-grained (CG) kinetic master equations. Based on this approach, the coarse-grained description reduces the dimensionality of the stiff master equations, while the ML-based surrogation bypasses their numerical integration. Simultaneously, the physics-informed attribute of the ML model, given by appropriate choices of loss functions, constraints, and inference algorithms, enforces predictions that respect the underlying non-equilibrium physics. The proposed framework is meant to investigate rovibrational relaxations and dissociation of gas mixtures, and it is here tested on the O₂-O mixture. The novel ML tool outperforms the numerical integrators by two orders of magnitude in speedup with an error smaller than 2%. This work lays the foundation for an efficient ML- and CG-based surrogation to be coupled with CFD simulations for accurately characterizing the thermochemical non-equilibrium.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极烧鹅完成签到,获得积分10
刚刚
如来完成签到,获得积分10
刚刚
1秒前
Sunflower完成签到,获得积分10
1秒前
FLZLC发布了新的文献求助10
1秒前
jun完成签到 ,获得积分10
1秒前
Ys完成签到,获得积分10
2秒前
2秒前
Hello应助帅气的猫采纳,获得10
2秒前
Winfred完成签到,获得积分10
3秒前
3秒前
褚晣完成签到,获得积分10
3秒前
肖肖完成签到,获得积分10
4秒前
4秒前
xibei完成签到,获得积分10
5秒前
喵拟吗喵完成签到,获得积分10
5秒前
栗子完成签到,获得积分10
5秒前
6秒前
6秒前
思源应助Winfred采纳,获得10
6秒前
Hello应助163采纳,获得10
6秒前
6秒前
开朗的班发布了新的文献求助10
7秒前
hoangphong完成签到,获得积分10
7秒前
7秒前
WFY发布了新的文献求助10
8秒前
冰柠檬完成签到,获得积分20
8秒前
球球完成签到,获得积分20
9秒前
凌雪柯发布了新的文献求助100
9秒前
maomao发布了新的文献求助200
9秒前
何晨光发布了新的文献求助10
9秒前
如来发布了新的文献求助10
10秒前
10秒前
一一完成签到,获得积分10
10秒前
Mr_Zhang完成签到,获得积分10
11秒前
闫富扬发布了新的文献求助10
11秒前
11秒前
因几完成签到 ,获得积分10
12秒前
六月666关注了科研通微信公众号
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118