Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:11
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只小学弱完成签到,获得积分10
刚刚
刚刚
苏羽关注了科研通微信公众号
刚刚
刚刚
PONY发布了新的文献求助10
2秒前
JinChow发布了新的文献求助10
2秒前
论文小白发布了新的文献求助10
2秒前
3秒前
Jasper应助kyros采纳,获得10
5秒前
空城发布了新的文献求助10
5秒前
善学以致用应助oVUVo采纳,获得10
6秒前
你大爷完成签到,获得积分10
7秒前
小二郎应助hl采纳,获得10
7秒前
8秒前
XYN1发布了新的文献求助10
9秒前
10秒前
11秒前
无极微光应助卓头OvQ采纳,获得20
11秒前
11秒前
华仔应助论文小白采纳,获得10
12秒前
研友_VZG7GZ应助kyros采纳,获得10
12秒前
PONY完成签到,获得积分10
12秒前
canian完成签到,获得积分10
12秒前
13秒前
13秒前
2305814008发布了新的文献求助10
14秒前
15秒前
CL发布了新的文献求助10
15秒前
Lucas应助anhao采纳,获得10
15秒前
hrpppp完成签到,获得积分10
15秒前
狂风阿来完成签到 ,获得积分10
15秒前
15秒前
北执发布了新的文献求助10
15秒前
yan完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助冷静新烟采纳,获得10
17秒前
Taozhi发布了新的文献求助30
19秒前
Wcy发布了新的文献求助10
19秒前
科研通AI6应助景琦采纳,获得10
20秒前
XX完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718