Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:11
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
称心青亦完成签到,获得积分10
刚刚
老地方完成签到,获得积分10
刚刚
Corn发布了新的文献求助10
1秒前
1秒前
彦黄子孙完成签到,获得积分10
2秒前
丘比特应助安谢采纳,获得10
2秒前
2秒前
JamesPei应助plaaf采纳,获得10
3秒前
老地方发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
penny发布了新的文献求助10
4秒前
乐呵乐呵发布了新的文献求助10
4秒前
5秒前
5秒前
kk发布了新的文献求助10
5秒前
6秒前
6秒前
你好啊发布了新的文献求助10
7秒前
7秒前
无敌的我发布了新的文献求助10
8秒前
调皮的巧凡完成签到,获得积分10
8秒前
烟花应助难过千易采纳,获得10
8秒前
顺利铃铛发布了新的文献求助10
8秒前
8秒前
8秒前
BINGBING1230发布了新的文献求助10
9秒前
9秒前
lruri张完成签到,获得积分10
10秒前
顺心冰岚发布了新的文献求助10
11秒前
LX发布了新的文献求助10
11秒前
洁净白容发布了新的文献求助10
12秒前
ZMM发布了新的文献求助10
12秒前
上官若男应助此然采纳,获得10
13秒前
13秒前
隐形曼青应助BINGBING1230采纳,获得10
13秒前
薏晓完成签到 ,获得积分10
14秒前
善学以致用应助HJJHJH采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492