亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:11
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得30
59秒前
领导范儿应助科研通管家采纳,获得10
59秒前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
研友_89Nm7L发布了新的文献求助10
3分钟前
3分钟前
wrl2023完成签到,获得积分10
3分钟前
研友_89Nm7L完成签到,获得积分10
3分钟前
3分钟前
4分钟前
发呆员发布了新的文献求助100
4分钟前
量子星尘发布了新的文献求助10
4分钟前
万能图书馆应助发呆员采纳,获得100
4分钟前
aa完成签到,获得积分20
5分钟前
kklkimo完成签到,获得积分10
5分钟前
aa发布了新的文献求助50
5分钟前
zouzou完成签到,获得积分20
6分钟前
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
Akim应助科研通管家采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
lics发布了新的文献求助10
7分钟前
chenlc971125完成签到 ,获得积分10
8分钟前
Owen应助科研通管家采纳,获得10
8分钟前
开朗若之完成签到 ,获得积分10
9分钟前
su完成签到 ,获得积分10
9分钟前
陆康完成签到 ,获得积分10
9分钟前
ding应助小小果妈采纳,获得150
11分钟前
追寻奇迹完成签到 ,获得积分10
11分钟前
量子星尘发布了新的文献求助10
12分钟前
安静的小蘑菇完成签到,获得积分10
12分钟前
12分钟前
12分钟前
12分钟前
13分钟前
静待花开完成签到 ,获得积分10
13分钟前
13分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584693
求助须知:如何正确求助?哪些是违规求助? 4668633
关于积分的说明 14771517
捐赠科研通 4613312
什么是DOI,文献DOI怎么找? 2530178
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499