Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:27
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小白发布了新的文献求助10
刚刚
juaner发布了新的文献求助10
刚刚
大雁完成签到 ,获得积分10
1秒前
胡伊娜完成签到,获得积分20
1秒前
1秒前
传奇3应助NI采纳,获得10
1秒前
小二郎应助NIHAO采纳,获得10
1秒前
呓语发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
旅程发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
二豆子0发布了新的文献求助20
3秒前
3秒前
董恋风发布了新的文献求助10
4秒前
赘婿应助求知的周采纳,获得30
4秒前
Rosemarry发布了新的文献求助10
5秒前
深情安青应助不舍天真采纳,获得10
5秒前
张远最帅完成签到,获得积分10
5秒前
想得开居士完成签到 ,获得积分10
5秒前
missxxx完成签到,获得积分10
6秒前
啾啾发布了新的文献求助10
6秒前
大模型应助17采纳,获得10
7秒前
拼搏的黑夜完成签到,获得积分10
8秒前
8秒前
8秒前
淑芬发布了新的文献求助10
8秒前
嘿嘿发布了新的文献求助10
9秒前
momo应助uuuu采纳,获得10
9秒前
nb小子完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
小洋完成签到,获得积分10
13秒前
NIHAO完成签到,获得积分10
13秒前
Achhz发布了新的文献求助10
14秒前
LX完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049