已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:11
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
氟锑酸完成签到 ,获得积分10
2秒前
sora98完成签到 ,获得积分10
3秒前
3秒前
喜悦的小土豆完成签到 ,获得积分10
4秒前
5秒前
浮游应助仙女爱科研采纳,获得10
5秒前
6秒前
mr_wang发布了新的文献求助10
6秒前
炙热初柔发布了新的文献求助10
8秒前
灰灰完成签到 ,获得积分10
10秒前
川川完成签到,获得积分20
10秒前
Niki完成签到 ,获得积分10
11秒前
miyya发布了新的文献求助10
11秒前
贪玩的谷芹完成签到 ,获得积分10
13秒前
14秒前
jynihao完成签到,获得积分10
15秒前
温暖发布了新的文献求助10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
GingerF应助科研通管家采纳,获得60
18秒前
上官若男应助科研通管家采纳,获得10
19秒前
19秒前
无花果应助ROC采纳,获得10
21秒前
yuyu完成签到,获得积分20
22秒前
jynihao发布了新的文献求助10
25秒前
鸭鸭完成签到 ,获得积分10
25秒前
qianyixingchen完成签到 ,获得积分10
26秒前
26秒前
yuyu发布了新的文献求助30
26秒前
我是老大应助舒心人达采纳,获得10
27秒前
31秒前
Lllleen完成签到 ,获得积分10
33秒前
李明完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655