Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:27
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助科研通管家采纳,获得10
刚刚
1122发布了新的文献求助10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
Kenzonvay发布了新的文献求助10
刚刚
zik应助科研通管家采纳,获得10
刚刚
dew应助科研通管家采纳,获得10
刚刚
卷卷应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
刚刚
卷卷应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
贝尔摩德发布了新的文献求助10
2秒前
朝阳发布了新的文献求助10
2秒前
搜集达人应助尊敬的晓亦采纳,获得10
2秒前
2秒前
3秒前
Ava应助成亚娜采纳,获得10
4秒前
脑洞疼应助ffffff采纳,获得10
5秒前
赘婿应助宋锦秀采纳,获得30
5秒前
不知道叫什么完成签到,获得积分10
5秒前
sky发布了新的文献求助10
6秒前
6秒前
7秒前
Aniu完成签到 ,获得积分10
7秒前
斯文败类应助郭京京采纳,获得10
8秒前
田様应助莺时采纳,获得10
8秒前
8秒前
8秒前
9秒前
唐宇欣发布了新的文献求助10
9秒前
StarryYY完成签到,获得积分20
9秒前
傻狗发布了新的文献求助10
9秒前
霸气的思柔完成签到,获得积分10
10秒前
科研小贩完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI6应助1122采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597673
求助须知:如何正确求助?哪些是违规求助? 4683190
关于积分的说明 14828741
捐赠科研通 4661266
什么是DOI,文献DOI怎么找? 2536776
邀请新用户注册赠送积分活动 1504368
关于科研通互助平台的介绍 1470215