Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:27
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡幻然关注了科研通微信公众号
刚刚
1秒前
科研通AI6应助超帅的冷菱采纳,获得10
1秒前
汉堡包应助鸡柳先知采纳,获得10
1秒前
mmyhn发布了新的文献求助10
1秒前
HSY完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
duo完成签到,获得积分0
3秒前
哈哈完成签到,获得积分10
3秒前
111发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Twonej应助pikopiko采纳,获得20
5秒前
虫虫发布了新的文献求助10
5秒前
freebird应助能干阿锦采纳,获得10
5秒前
freebird应助能干阿锦采纳,获得10
5秒前
wanci应助遇疯儿采纳,获得10
6秒前
7秒前
7秒前
7秒前
哈哈发布了新的文献求助10
7秒前
7秒前
7秒前
Rosaline发布了新的文献求助10
8秒前
8秒前
小二郎应助方小上采纳,获得10
8秒前
简单白梦完成签到,获得积分10
9秒前
尊敬乐蕊完成签到,获得积分10
9秒前
可以发布了新的文献求助10
11秒前
汉堡包应助111采纳,获得10
11秒前
杨硕士完成签到,获得积分10
12秒前
小蘑菇应助skyangar采纳,获得10
12秒前
Zever完成签到,获得积分10
12秒前
闵松岳完成签到,获得积分20
12秒前
13秒前
Leonard_Canon发布了新的文献求助30
14秒前
天天快乐应助zz采纳,获得30
14秒前
Orange应助malistm采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653643
求助须知:如何正确求助?哪些是违规求助? 4790334
关于积分的说明 15065238
捐赠科研通 4812289
什么是DOI,文献DOI怎么找? 2574395
邀请新用户注册赠送积分活动 1529973
关于科研通互助平台的介绍 1488708