Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116471-116471 被引量:11
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
binshier发布了新的文献求助10
刚刚
科研通AI2S应助开心采纳,获得10
1秒前
无花果应助Yaon-Xu采纳,获得200
1秒前
sy完成签到,获得积分10
2秒前
wqy发布了新的文献求助10
4秒前
4秒前
10秒前
可靠的凌波完成签到,获得积分10
10秒前
嗷呜嗷呜完成签到,获得积分20
11秒前
12秒前
cjypdf发布了新的文献求助10
15秒前
18秒前
都是完成签到,获得积分10
18秒前
慕青应助暴躁的凝云采纳,获得10
20秒前
青空完成签到 ,获得积分10
21秒前
22秒前
温柔惜筠完成签到 ,获得积分10
22秒前
开心应助小可几何采纳,获得10
23秒前
26秒前
28秒前
1111完成签到,获得积分10
29秒前
栗子鱼发布了新的文献求助10
31秒前
Jello发布了新的文献求助10
33秒前
34秒前
Chirstina完成签到,获得积分10
35秒前
35秒前
Akim应助王路飞采纳,获得10
37秒前
Prime完成签到,获得积分10
37秒前
sunrase发布了新的文献求助30
37秒前
37秒前
PPP完成签到,获得积分10
38秒前
单薄归尘完成签到 ,获得积分10
38秒前
38秒前
轨迹完成签到,获得积分10
39秒前
华仔应助可靠的凌波采纳,获得10
39秒前
百浪多息发布了新的文献求助10
40秒前
Owen应助Jello采纳,获得10
40秒前
Ryan完成签到,获得积分10
41秒前
爱健身的小海豹完成签到,获得积分10
41秒前
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023