Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images

计算机科学 人工智能 分割 深度学习 乳腺癌 模式识别(心理学) 数字化病理学 免疫组织化学 癌症 病理 医学 内科学
作者
Blanca Priego,Bárbara Lobato-Delgado,Lidia Atienza-Cuevas,Daniel Morillo
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:193: 116471-116471 被引量:11
标识
DOI:10.1016/j.eswa.2021.116471
摘要

The quantification of biomarkers on immunohistochemistry breast cancer images is essential for defining appropriate therapy for breast cancer patients, as well as for extracting relevant information on disease prognosis. This is an arduous and time-consuming task that may introduce a bias in the results due to intra- and inter-observer variability which could be alleviated by making use of automatic quantification tools. However, this is not a simple processing task given the heterogeneity of breast tumors that results in non-uniformly distributed tumor cells exhibiting different staining colors and intensity, size, shape, and texture, of the nucleus, cytoplasm and membrane. In this research work, we demonstrate the feasibility of using a deep learning-based instance segmentation architecture for the automatic quantification of both nuclear and membrane biomarkers applied to IHC-stained slides. We have solved the cumbersome task of training set generation with the design and implementation of a web platform, which has served as a hub for communication and feedback between researchers and pathologists as well as a system for the validation of the automatic image processing models. Through this tool, we have collected annotations over samples of HE, ER and Ki-67 (nuclear biomarkers) and HER2 (membrane biomarker) IHC-stained images. Using the same deep learning network architecture, we have trained two models, so-called nuclei- and membrane-aware segmentation models, which, once successfully validated, have revealed to be a promising method to segment nuclei instances in IHC-stained images. The quantification method proposed in this work has been integrated into the developed web platform and is currently being used as a decision-support tool by pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净的早晨完成签到,获得积分10
刚刚
1秒前
H1998完成签到,获得积分10
1秒前
1秒前
bkagyin应助小李采纳,获得10
2秒前
852应助对映体采纳,获得10
2秒前
南兮发布了新的文献求助10
3秒前
3秒前
情怀应助科研小白采纳,获得10
3秒前
3秒前
4秒前
Hellodude发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
艾小晞发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
Judy完成签到 ,获得积分10
7秒前
维尼发布了新的文献求助10
7秒前
7秒前
7秒前
尹绿蓉完成签到,获得积分10
9秒前
张小枚发布了新的文献求助10
9秒前
YuGe发布了新的文献求助10
10秒前
Jasper应助superspace采纳,获得10
10秒前
Lucas应助嘿嘿嘿采纳,获得10
11秒前
11秒前
完美世界应助罗拉采纳,获得10
11秒前
浮游应助无心采纳,获得10
11秒前
XJP发布了新的文献求助10
11秒前
林黛玉完成签到 ,获得积分10
11秒前
11秒前
祝志泽发布了新的文献求助10
11秒前
搜集达人应助李lichunn采纳,获得10
12秒前
12秒前
wuti完成签到,获得积分10
12秒前
小俊发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194106
求助须知:如何正确求助?哪些是违规求助? 4376448
关于积分的说明 13629417
捐赠科研通 4231351
什么是DOI,文献DOI怎么找? 2320965
邀请新用户注册赠送积分活动 1319192
关于科研通互助平台的介绍 1269564